JModelica.org User Guide
Version 1.3.0

JModelica.org User Guide: Version 1.3.0

Publication date 2010-08-29
Copyright © 2010 Modelon AB

Acknowledgements

This document is produced with DocBook 5 using XMLMind XML Editor for authoring, Norman Walsh's X SL
stylesheets and a GNOME xdltproc + Apache fop toolchain. Math contents is converted from LaTeX using the
TeX/LaTeX to MathML Online Tranglator by the Ontario Research Centre for Computer Algebra and processed
by JEuclid.

O T 0o 18 Tox £ o o [T 4

I oo 18 LA Y oo = I Tor= Ko £ RO P TSP 4
2. MISSION SEBIEMENT ...ttt e e ettt e e et e et e e e b eeera e 4
3. TECINOIOY ..ttt ettt ettt e et et e e et e e e e e e e e aeae 4
N (o 11 (= ol (PP PTTR 5
B EXEENSIDIITY .. 5
A 10 = | = 1 o) o ISP SUPPPT 7
1. SUPPOIEd PIALFOIMS ...t e et e et e e e 7
2. Binary distriBULION ..o e e e 7
% O | o QPO PT TR TOPPTTP 7

2.2. IMBE OS X ettt ettt ettt e e e e e et ettt e e e e e e e et ittt e e e e aaeeanrans 7

2.3 WINOOWS <.ttt ettt et e e e et e e et e e e e e abe e e enaas 7
2.3. 1 PrErQQUISITES ... eeeeti ettt ettt et et 7

2.3.2. WINAOWS INSEAITEY ... e 8

3. GEING SEAMEA ...ttt et e 9
1. Compilation Of MOGEIScouuuiiiii e et e e et e s 9
L1, COMPITBLION ..ttt ettt ettt et e et e e et e e e eaa s 9
1.1.2. Simple compilation EXamMPIEcouuuiiii e 9

O I o T PP TPPITR 10

1.1.3. Compilation in MOre detailc.uuiiiiiiiiieiei e 10

2. SIMUIELION Of MOUEIS ...t et e e 11
2.1. Simulation of an eleCtriCal CIFCUITcoeuuuniiiiii e 11

2.2. SIMulation and ParaMELEr SWEEDSc.vuueieiti et e et e ettt e et e et e e et e e e 13

3. Solving optimal control ProbIEIMSuuuiiii e 14
3.1. The van der POl OSCHTBLONeiieiieeiii e 14

3.2. The Hicks Ray Continuously Stirred Reactor (CSTR)ccovuviieiiiiiieeiciiieeeeee e 15
3.2.1. Compile and instantiate a Model ODJECEocvevviiiiiiiii e 16

3.2.2. Solve the DAE initialization problemiiiiiiiiiiie e 17

3.2.3. Solving an optimal control Problemveiiiiiiiii e 17

3.2.4. Verify optimal control SOIULIONcouuuiiiiiiieiiii e 20

2.5, EXEICISES .. ieiti ettt ettt 22

32,6, REFEIEINCES ...ovuiieei et 22

4. Solving parameter estimation ProbIEMScoouuiiiiii 22
5. WOorking With file 17O ...ooue e e 30
5.1 HO FUNCHONGITY ...ttt e s 30

5.2. LOAOING FESUIT QaIA ceeeti e 31

6. Setting and saving MOCE! PArAMELENSuuuiiiii e e e eab e e 31
6.1. Model parameter XIML FilESooeuiiii e 31

B.2. G AN SEL VAIUE ...t 31

6.3. Loading from and Saving 10 XIMLcoouuiiiiiiiiei e 32
6.3.1. Loading XML VAlUES FIl@couuniiiiii e 32

6.3.2. Writing to XML ValUES FIl@ ...cooveiiiii e 32

N Y I 11 (= 1 =0 PP PP UPPPT 33
1. Overview of IModelica.org FMI Python packagecouuveiiiiiiieiiii e 33
2. EXBIMPIES .o 34
2.1. Simulation using the native FMI iNterfaceooveviiiiiiiii e 34
210 IMPIEMENEBLION .. .eeietieeeeit ettt e e e e aaaas 34

2.2. Example using @ compiled FIMU ..o 38
221 IMPIEMENEBLIONeeeetieieeet ettt et e e e e eaaas 38

5. High-level functions: initialize, simulate and OPLtiMIZEc..uuiiiiiiiie e 41
Lo OVEIVIBIW oottt ettt ettt e een e e eaaas 41
1.1. Importing the high-level fUNCLIONScoooiiiii e 41

1.2, DEfAUIT @rQUIMIENESeeeti ittt ettt ettt e et e e e et et e aba e e eenes 41
1.2.1. FUNCEION BIQUMENESteeeeiit et e ettt e e et e e e at e e e et e e eenan e eeeens 41

1.2.2. AlQOrithm argument al g_args «e..eeeeeeeeneeeneei et e e e e e e e eei e ee e eennns 43

1.2.3. AlQOrithm arguMENT SOl VEI 85 S tevvuureierrineeiiiiieeeiii e e eei e eeri e e eaia e e eaan s 44

1.3 RESUIT ODJECL ...ttt 44

R N o o 11110 £ TP TPPPPTPRPPINY 44

JModelica.org User Guide

1.5. Short SIMUIELION EXAMPIEiieiit e e 45

6. AGVANCED TOPICS ...eevteeeeit ettt ettt ettt e ettt e et ettt et ettt e e ettt e e et e bt e e et e b e e eeaa e eee 47
1. Tutorial on ADStract SYNtaX TrEES (ASTS) ...eeeeru ittt et eeaanns 47

1.1. About ADSLIaCt SYNBX TIEES ...cevuieiiiii ettt 47

1.2. Start the Python Shell ... 48

1.3. Load the Modelica standard liDrary ... 48

1.4. Count the number of classes in the Modelica standard librarycccooiveiiiiiiiiiiiinnenns 49

1.5. DUMP the iNSEANCE AST ..ottt 50

1.6. Flattening of the filter Modelcooeeiiii e 52

A O o 1111]Lor- R PSP SOP PP 53
1. A new specialized Class: opt i M ZALT ON c.eeuuuniiiiiti et et e e e e e e e eees 53

2. Attributes for the built in Class Rlcooouiiiii e 54

3. A Function for accessing instant values of avariablecooooiiiiiiii 54

A, ClaSS AMULESot et 55

I O0 0 = | T PP PT T TSOPPTTR 55

S I 00Tl = o] TSP PP PPPRT 57
9. REIBASE NOLES ...ttt ettt e et e et e et e et e et 59
1. Release notes for IMOdelicaorg VErSION 1.2ccouuuiiiiiiieeeiii et 59

L1 HIGhIIGNES ..ot 59

1.2, COMPILEIS .ottt e et e e et et e et e e e et eeen 59

1.2.1. The Modelica COMPITEYcoeiiiiiiii e 59

1.2.2. The Optimica COMPITEYcieiiei e 60

1.3. The IModelica.org Model Interface (IMI) ...oooveniiiiiiie e 60

L.3.0 GENETEL ...t 60

1.4. The collocation optimization algorithmccooiiiiiiii e, 61

1.4.1. Piecewise constant CONtrol SIgNAIScccuuuieiiiiiee e 61

1.4.2. Freeinitial conditions allowedcooiiiiiiiiiiiii 61

1.4.3. Dens output of OPtiMIZation FESUITuuiiiiiiieeiii e 61

1.5. New simulation package: ASSIMUIOc.uuuiiiiiiiieeeii e 61

1.6, FMI COMPLIBNCE ...ttt ettt e e e e e e e eae s 61

1.7, XIML MOAEl EXPOIT ...ttt ettt e s 61

1.8, Python iNEEOIELIONueiiiit ettt ettt e e e e enaas 61

1.8.1. New high-level functions for optimization and simulationccccceeveeeinnnne. 62

I 0] g 1] o1 (o) £ ST SPPPTR 62

1.9.1. Previous CONIDULONSuuiiiiiii e 62

2. Release notes for IModelica.org VErSION 1.3iiiiiiiieiiii e 62

2.1 HIGNHGNES <.t 62

2.2, COMPILENS o ettt 62

2.2.1. The Modelica COMPITESNcouuiiiiii e e 62

2.2.2. The Optimica COMPITENoiieii e 63

2.3. IModelicaorg Model Interface (IMI)uniiiii e 64

2.3.1. The collocation optimization algorithmcoooeiiiiiiii 64

2.4, ASSIMUIO <.ttt et ettt et et e e e e aae 64

2.5, FMI COMPIIBICE ..ottt e e e 64

2.6. XIML MOTE] EXPONT ... ceeett ettt ettt ettt e e et e e et et e e e eat e e eenaaeaees 64

2.6.1. NOEVENt OPEIELON ... ccviieieteeei ettt e et e et ettt e e e e e e e e e eneas 64

2.6.2. static @DULEiiiii e 64

2.7. PYthon INEEOIALIONu ittt e et e s 64

2.7.1. High-1eVel TUNCHIONS ... e 64

272 FIE O e 65

2.8, CONIIDULOIS ...ttt e e et e e et e e e e e eeees 65

2.8.1. Previous CONLITDULOISuuuiiiiiie et 65

(211 ol oo = o] 1| PSP 66
10 (= PSPPSR 67

Chapter 1. Introduction
1. About JModelica.org

JModelica.org is an extensible M odelica-based open source platform for optimization, simulation and analysis of
complex dynamic systems. The main objective of the project isto create an industrially viable open source platform
for optimization of Modelica models, while offering a flexible platform serving as a virtual lab for algorithm
development and research. Assuch, IModelica.org isintended to provide a platform for technology transfer where
industrially relevant problems can inspire new research and where state of the art algorithms can be propagated
form academia into industrial use. IModelica.org is aresult of research at the Department of Automatic Control,
Lund University, [Jak2007]and is now maintained and devel oped by Modelon AB in collaboration with academia.

2. Mission Statement

To offer acommunity-based, free, open source, accessible, user and application oriented Modelica environment
for optimization and simulation of complex dynamic systems, built on well-recognized technology and supporting
major platforms.

3. Technology

JModelica.org relies on the established modeling language Modelica. Modelicatargets modeling of complex het-
erogeneous physical systems, and is becoming a de facto standard for dynamic model development and exchange.
There are numerous model libraries for Modelica, both free and commercial, including the freely available Mod-
elica Standard Library (MSL).

A unique feature of IModelica.org is the support for the innovative extension Optimica. Optimica enables you to
conveniently formulate optimization problems based on M odelicamodel s using simple but powerful constructsfor
encoding of optimization interval, cost function and constraints. Optimica a so features annotations for choosing
and tailoring the underlying numerical optimization algorithm a particular optimization problem.

The IModelica.org compilers are developed in the compiler construction framework JastAdd. JastAdd is based on
established concepts, including object orientation, aspect orientation and reference attributed grammars. Compil-
ers developed in JastAdd are specified in terms of declarative attributes and equations which together forms an
executable specification of the language semantics. In addition, JastAdd targets extensible compiler devel opment
which makes it easy to experiment with language extensions.

For user interaction JIModelica.org relies on the Python language. Python offers an interactive environment suit-
able for scripting, development of custom applications and prototype algorithm integration. The Python packages
Numpy and Scipy provide support for numerical computation, including matrix and vector operations, basic linear
algebraand plotting. The IModelica.org compilers aswell asthe model executables/dlsintegrate seemlessly with
Python and Numpy.

http://www.modelica.org

Introduction

4. Architecture

Figure 1.1. JModelica platform architecture.

o Compiler

-

DLL

... Generated code
JMI runtime library
ODE | DAE m‘? opt.

Python Algorithms

{ User scripts/code W

Front-

Integrated
Development

Environment
(Eclipse plugin)

The IModelica.org platform consists of a number of different parts:

The compiler front-ends (one for Modelicaand one for Modelica/Optimica) transforms M odelicaand Optimica
codeinto aflat model representation. The compilersalso check the correctness of model descriptionsand reports
errors.

The compiler back-ends generates C code and XML code for Modelica and Optimica. The C code contains
the model equations, cost functions and constraints whereas the XML code contains model meta data such as
variable names and parameter values.

The JModelica.org runtime library is written in C and contains supporting functions needed to compile the
generated model C code. Also, the runtime library contains an integration with CppAD, atool for computation
of high accuracy derivatives by means of automatic differentiation.

Currently, IModelica.org features one particular algorithm for solving dynamic optimization problems. The
algorithm is based on collocation on finite elements and relies on the solver IPOPT for obtaining a solution
of the resulting NLP.

JModelica.org uses Python for scripting and prototyping. For this purpose, a Python package is under develop-
ment with the objective of offering functions for driving the compilers and for accessing the (compiled) func-
tionsin the runtime library/generated C code.

5. Extensibility

The IModelica.org platform is extensible in a number of different ways:

JModelica.org features a C interface for efficient evaluation of model equations, the cost function and the con-
straints: the IModelica Model Interface (IMI). IMI aso contains functions for evaluation of derivatives and
sparsity and is intended to offer a convenient interface for integration of numerical algorithms.

In addition to the the C interface, model meta data can be exported in XML. In the future thisfeatureisintended
to be extended to include full model export in XML, which in turn enables use of XML techniques such as
XPATH and XSLT.

JastAdd produces compilersencoded in pure Java. Asaresult, the IModelica.org compilers are easily embedded
in other applications aspiring to support Modelicaand Optimica. In particular, a Java API for accessing the flat
model representation and an extensible template-based code generation framework is offered.

The IModelica.org compilers are developed using the compiler construction framework JastAdd. JastAdd fea-
tures extensible compiler construction, both at the language level and at the implementation level. Thisfeature

Introduction

is explored in IModelica.org where the Optimica compiler isimplemented as a fully modular extension of the
core Modelicacompiler. The IModelica.org platform is a suitable choice for experimental language design and
research.

An overview of the IModelica.org platform is given [Jak2010]

Chapter 2. Installation
1. Supported platforms

JModelica.org can be installed on Linux, Mac OS X, and Windows (XP, Vista, 7) with 32-bit or 64-bit architec-

tures. Most development work is carried out on 32-bit Mac OS X , 32 and 64-bit Linux and 32-bit Windows XP,
so these platforms tend to be best tested.

2. Binary distribution

Pre-built binary distributions for Windows are available in the Download section of www.jmodelica.org.

2.1. Linux

Currently, no pre-built binary distributions are provided for Linux.

2.2. Mac OS X

Currently, no pre-built binary distributions are provided for Mac OS X.

2.3. Windows

The JModdicaorg Windows instaler contains a binary distribution of JModelica.org built using the
JModelica.org-SDK, bundled with required third-party software components. The JModelica.org Windows in-
staller sets up a pre-configured complete environment with convenient start menu shortcuts.

2.3.1. Prerequisites

Make sure to install the required software components listed in this section before installing IModelica.org.
2.3.1.1. Java

It isrequired to have a Java Runtime Environment (JRE) version 6 installed on your computer.

Toinstall JRE

1. GetaJREinstaler suitablefor your platform here.

2. Runtheinstaler.

2.3.1.2. Python

Python 2.6 with the following additional packages are required:

NumPy The fundamental package needed for scientific computing with Python.
SciPy A library of agorithms and mathematical tools for Python.
matplotlib A plotting library for Python, withaMATLAB like interface.

PyReadline A readline for Windows required by | Python.

| Python An interactive shell for Python with additional shell syntax, code highlighting, tab completion,
string completion, and rich history.

There are two options to install the necessary Python components, as described below.

www.jmodelica.org
http://www.java.com/en/download/index.jsp
http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://ipython.scipy.org/moin/PyReadline/Intro
http://ipython.scipy.org/moin/

Installation

Separate installation of Python prerequisitesfor Windows binary installer

1. Download and install Python 2.6.

2. Download and install the additional packages (be sure to select aversion for Python 2.6 when applicable):

Table 2.1. Python prerequisities

Package Recommended version
NumPy 130
SciPy 0.7.1
matplotlib 0.99.1.1
PyReadline 15
| Python 0.10

Python(x,y) installation of Python prerequisitesfor Windows binary installer

Python(x,y) is a scientific-oriented Python distribution that includes all necessary dependencies (and alot more!).

1. Download a Python(x,y) installer for Python 2.6.

2. Runtheinstaller and select afull installation (or select the required packages manually for asmaller footprint).

2.3.2. Windows installer

Toinstall IModelica.org from Windows installer

Make sure that al prerequisite components are installed before continuing.

1. Download a IModelica.org Windows binary installer.

2. Runtheinstaller and follow the wizard.

» Choosetoinstall the additional Python packages when prompted, unless the are already installed.

http://www.python.org/download/releases/
http://sourceforge.net/projects/numpy/files/
http://sourceforge.net/projects/scipy/files/
http://sourceforge.net/projects/matplotlib/files/
https://launchpad.net/pyreadline/+download
http://ipython.scipy.org/moin/Download
http://www.pythonxy.com/
http://www.pythonxy.com/
http://www.jmodelica.org/page/12

Chapter 3. Getting started

The examples in IModelica.org uses the Python scientific library SciPy, which is dependent on NumPy and the
mathematical plotting library matplotlib for plotting. These packages will thus also be used in some examplesin
this chapter. Most Python functions have built-in documentation, which can be accessed from the Python shell by
invoking the help function, for example hel p(nurpy. si ze) . Use this feature frequently to learn more about the
packages used in this tutorial, including the jmodelica package. It is possible do the tutorials without any Python
knowledge (although it helps to know the basics).

Thetutorialsin thischapter are preferably runin aPython shell using the Pylab mode. If you are running Windows,
select the menu option 'pylab’ provided with the IModelica.org installation. If you are running Linux or Mac OS
X, open aterminal and enter the command:

> $JMODELI CA_HOME/ Pyt hon/j m i pyt hon. sh - pyl ab

Asyour first action, go to the working directory you have created:
In [1]: cd '/path/to/working/directory'

In order to run the Python script, use the 'run’ command:

in [2]: run cstr.py

In most cases it is convenient to store the Python commands in a script file and run the script from the file by
invoking the Python command run:

>>> run ny_script.py

or

>>> run -i ny_script.py

where the latter will render all variablesto be accessible in the Python interpreter after termination of the script.

1. Compilation of models

Thistutorial covershow to compile Modelicaand Optimicamodelsinto C and XML and how to load the resulting
DLLsinto Python.

1.1. Compilation

There are two compilers available, Model i caConpi | er and Opt i mi caConmpi | er . Any model containing Optimica
code has to be compiled with the Opt i ni caConpi I er . Thisis the case with the CSTR model which will be used
in the following examples.

1.1.1. Simple compilation example
Compiling amodel file can be done with just afew lines of code.
1.1.1.1. Instantiating the compiler

First the Opt i mi caConpi | er must be imported and instantiated. The compiler instance can then be used multiple
times on different model files.

|l mport the conpiler
from jnodelica.conpiler inmport Optim caConpiler

Get an instance of Opti m caConpil er
oc = Optim caConpiler()

1.1.1.2. Options

Compiler options are read from an XML file 'options.xml' which can be found in the IModelica.org installation
folder. The options are loaded from the file as the compiler is instantiated. Options for a compiler instance can

Getting started

be modified and new options can be added interactively. There are four type categories: string, real, integer and
boolean. The following example demonstrates how to get and set a string option.

Get the string option default_nsl_version

oc.get _string_option('default_nsl_version')
>> '3.0.1

Set the default_nsl_version to 3.0.1
oc.set_string_option('default_nsl _version','3.0.1")

1.1.1.3. Compiling

Compile amodel, using the previously created compiler instance, with the method conpi | e_nodel whichtakesa
model name and amodel file name as arguments. Once compilation has completed successfully aDLL file along
with afew other files will have been created on the file system. The DLL file can then be loaded using the class
jmi.Model. The result model object is used to interact with the IMI Modéel interface. conpi | e_nodel does the
DLL loading for you and will return with the jmi.Model model object as return argument.

Conpile the nbdel and get a jm .Mdel as return argunent
cstr_nodel = oc.conpile_nodel (' CSTR CSTR Opt', ' CSTR np')

If the compilation has failed an exception will be raised.
1.1.2. Targets

The conpi | e_model method takes an optional argument target which is'nodel’ by default. There are three other
options for this argument, 'nodel _noad', 'al gorit hm and 'i popt ". It is necessary to compile with target 'i popt '
to use the Ipopt algorithm interface for optimization.

Conpile the nodel with support for |popt and get a jm .Mdel as return argunent
cstr_nodel = oc.conpile_nodel (' CSTR CSTR Opt', 'CSTR np', target='ipopt')

1.1.3. Compilation in more detail

Compiling with conpi | e_rodel actually bundlesafew stepsrequired for the compilation which can be run one by
one. These steps will be described briefly here, for more information on these steps, see the Architecture section
in the Introduction.

1.1.3.1. Flattening

Inthefirst step, the model istransformed into aflat representation which can be used to generate C and XML code.
Before this can be done the model must be parsed and instantiated. If there are errors in the model, for example
syntax or type errors, Python exceptions will be thrown during these steps.

Parse the nodel and get a reference to the source root
source_root = oc. parse_nodel (' CSTR np')

CGenerate an instance tree representation and get a reference to the nodel instance
nodel _i nstance = oc.instantiate_nodel (source_root, 'CSTR CSTR Opt')

Performflattening and get a flat representation
flat_rep = oc.flatten_nodel (nodel _i nstance)

1.1.3.2. Code generation

The next step is the code generation which produces C code containing the model equations and a couple of XML
files containing model meta data such as variable names and types.

Cenerate code
oc. generate_code(fl at_rep)

Severad files are generated in this step.
1.1.3.3. Generate Shared Object file (DLL)

Finally, the DLL file is built where the C code is linked with the IModelica.org Model Interface (JMI) runtime
library. The target argument must be set here if something other than the default 'model’ is wanted.

10

Getting started

Conpile DLL
oc.conpile_dll (' CSTR CSTR Opt', target="ipopt')

1.1.3.4. Loading the Shared Object file (DLL)

The DLL fileisloaded using the class Model from which the IMI Model interface can be reached.

| mport Model

fromjnmodelica.jm inport Model

Load dll file and create Mdel object
model = Mbdel (' CSTR_CSTR Opt ')

The model object can now be used to manipulate parameters and for optimization and simulation.

2. Simulation of models

2.1. Simulation of an electrical circuit

This example focus on how to use the high-level simulation functionality on a model of an electric circuit. The
model is depicted in Figure (RLC.png) and consists of resistances, inductors and a capacitor. The circuit is con-
nected to a voltage source which generates a square-wave with an amplitude of 1.0 and a frequency of 0.6 Hz.
Thismodel iswritten in Modelica code and saved in the file RLC_Circuit.mo and is depicted in below.

Figure 3.1. Electric Circuit

resistar

souare

s

fragHz=06

L=t

>
| |
;U ;
capactar
=1
inductart

signalvoltage
resistor1

inductor

e

- L=t

around

To use the functionality provided by the IModelica.org platform they first have to be imported into the Python
script. So we start by importing the following:

fromjnodelica inport sinulate
import pylab as P

The method 'simulate’ is the high-level ssmulation method and the 'pylab’ package is used here for plotting.

Next, we need to provide the 'simulate’ method with information about which model we would like to ssimulate
and where it is stored. We aso need information about the simulation interval. The information is then passed
down in the following way,

res_object = sinmulate(nmodel = RLC Circuit_Square', file_name='RLC G rcuit.nmo',

11

Getting started

al g_args={'start_tine':0.0,'final _tine':20.0,"' num comruni cati on_poi nts':0})

The return argument from 'simulate’ is a result object where the simulation result can be retrieved using the
method get _resul t _data. Here 'alg_args are the arguments for the algorithm stored in a dictionary. The
'num_communication_points representsthe number of communication points stored by the algorithm. The default
is 500 points and when set to zero (0), the internal steps calculated by the algorithm are stored. If the problem
requires that the default options in the specific solver needs to be changed, they should be passed down in adic-
tionary called 'solver_args. Typically these options can be the tolerances. Using the default simulation package,
Assimulo, information regarding which algorithms are supported and the solver arguments can be found here,
http://www.jmodelica.org/assimulo . The default solver isIDA and for a selection of the solver argumentsto IDA,
see the table below.

Table 3.1. Selection of solver argumentsfor IDA

Argument Option
suppress_alg (Suppressthealgebraic variablesontheer- | Boolean flag
ror test)
initstep (Theinitial step-size) Positive float
maxorder (The maximum order used) Integer of max 5
maxh (Maximum step-size) Positive float
atol (Absolute Tolerance) Array of floats or Float
rtol (Relative Tolerance) Float

After asuccessful simulation the statistics are printed in the prompt and the results are stored in the variable 'res.
To view the result, we have to retrieve information about the variables we are interested of. Thisis easily done
in the following way,

res = res_object.get_result_data()

square_y = res.get_variabl e_data(' square.y"')

resistor_v = res.get_variable data('resistor.v')
inductorl i = res.get_variable_data('inductorl.i")

And then plotted with the help from pylab,

P.pl ot (square_y.t, square_y.x, resistor_v.t, resistor_v.x, inductorl i.t, inductorl_i.x)
P.l egend(('square.y', 'resistor.v','inductorl.i'))
P. show()

The simulation result is shown in the figure below:

Figure 3.2. Simulation result

WO— M M1 1 1 1 1 11— squarey

— resistor.v
ost |/

— inductorl.i

0.0

—0.5f

-0 & - 4 0 v i 4 L

12

Getting started

2.2. Simulation and parameter sweeps

Thistutorial demonstrates how to run multiple simulations with different parameter values. Sweeping parameters
is a useful technique for analysing model sensitivity with respect to uncertainty in physical parameters or initial
conditions. Consider the following model of the Van der Pol oscillator:

nodel VDP
/] State start val ues
parameter Real x1_0 = O;
paraneter Real x2_0 = 1;

/| The states
Real x1(start
Real x2(start

x1 0);
x2_0);

/1 The control signal
i nput Real u;

equati on
der(x1) = (1 - x2722) * x1 - x2 + u;
der (x2) = x1;

end VDP;

Notice that the initial values of the states are parametrized by the parameters x1_0 and x2_0. Next, copy the
Modelica code above into a file VDP.mo and save it in your working directory. Also, create a Python script file
and name it vdp_pp.py. Start by copying the commands:

i mport nunpy as N

import pylab as p

from jnodelica.conpiler inmport MdelicaConpiler
from jnodelica inport simnulate

into the Python file. Compile and load the model:

Define nodel file nane and cl ass nane
nodel _name = ' VDP'
nofile = ' VDP. no'

Create a Modelica conpiler
nc = Model i caConpi |l er ()

Conpile and | oad nodel
nmodel = nt.conpil e_nodel (nodel _nane, nofil e, target="i popt"')

Next, we definetheinitial conditions for which the parameter sweep will be done. The state x2 startsat 0, whereas
theinitial condition for x1 is swept between -3 and 3:

Define initial conditions

N points = 11

x1_0 N. i nspace(-3.,3., N _points)
x2_0 N. zer os(N_poi nt s)

In order to visualize the results of the simulations, we open a plot window:

fig = p.figure()
p.clf()

p. hol d(Tr ue)

p. xl abel (' x1")
p. yl abel (' x2")

The actual parameter sweep is done by looping over the initial condition vectors and in each iteration set the
parameter values into the model, simulate and plot:

for i in range(N_points):
Set initial conditions in nodel
nmodel . set _val ue(' x1_0',x1_0[i])
nmodel . set _val ue(' x2_0',x2_0[i])
Sinul ate
simres = sinmul ate(nodel ,al g_args={'final_tine':20})
Get simulation result

13

Getting started

res = simres.result_data
x1l=res. get _variabl e_data('x1')
x2=res.get_vari abl e_data(' x2")
Plot sinulation result in phase plane pl ot
p. pl ot (x1.x, x2.x,"'b")

p. grid()

p. show()

Y ou should now see the following plot:

Figure 3.3. Simulation result-phase plane

3. Solving optimal control problems

3.1. The van der Pol Oscillator

We consider the following Optimica model:

optim zation VDP_Opt (objective = cost(finalTine),
startTinme = 0,
final Tine = 20)

/] The states
Real x1(start=0,fixed=true);
Real x2(start=1,fixed=true);

/1 The control signal
i nput Real u;

Real cost(start=0,fixed=true);

equati on
der (x1) =
der (x2) =
der (cost)
constrai nt
u<=0. 75;
end VDP_Opt;

- x272) * x1 - x2 + u;

(
X1:
= X172 + x2"2 + u"2;

Create anew file named VDP_Opt.mo and save it in you working directory. Next, create a Python script file and
awrite (or copy paste) the following commands:

lnport the optimze function
fromjnodelica inport optinize

Inport the plotting library
import matplotlib. pyplot as plt

14

Getting started

Next, we call the 'optimize' function which encapsulates operations for compiling, loading, executing the opti-
mization algorithm, and loading the result from file:

res_object = optimze("VDP_Opt", "VDP_Opt.n")

In this case, we use the default settings for the optimization algorithm and provide only the name of the Optimica
class (the first argument) and the name of the file (VDP.mo). The return object is aresult object which contains a
reference to ajmodelica.Model object representing the compiled model and also the optimization result. To access
the optimization result and the optimal trajectories:

res = res_object.get _result_data() #Get the result data
x1l=res. get _variabl e_data('x1')

x2=res. get _vari abl e_data(' x2')
u=res.get_variable_data('u')

The return arguments are objects of the Python class jmodelica.io. Trajectory, which has two fields: 't' which rep-
resents the time vector and 'x' which represents the trgjectory vector. t and x are both numpy arrays of the same
length. Using the matplotlib package, we can visualize the optimization result:

plt.figure(l)
plt.clf()

plt. subpl ot (311)
plt.plot(x1.t,x1.x)
plt.grid()
plt.ylabel (' x1")

pl t. subpl ot (312)
plt.plot(x2.t,x2.x)
plt.grid()
plt.ylabel ('x2")

plt. subpl ot (313)
plt.plot(u.t,u.x)
plt.grid()
plt.ylabel (‘u")
plt.xlabel ("tinme')
pl t.show()

Y ou should now see the optimization result as shown below.

Figure 3.4. Van der Pol optimization result.

wu
=
[S)
4 =L
v
N
o

time

3.2. The Hicks Ray Continuously Stirred Reactor (CSTR)

This example is based on the Hicks-Ray Continuoudly Stirred Tank Reactors (CSTR) system. The model was
originally presented in [1]. The system has two states, the concentration, ¢, and the temperature, T. The control

15

Getting started

input to the system is the temperature, Tc, of the cooling flow in the reactor jacket. The chemical reaction in the
reactor is exothermic, and also temperature dependent; high temperature resultsin high reaction rate. The CSTR
dynamicsis given by:

c(t) =w -,’(Oc(t)g-EdivR/T(t]
: FAToTW) dikdd) o
T([) = v T e_EleR/T(t)+%(TC(Z')-T(Z‘))

Thistutorial will cover the following topics:

* How to solve a DAE initialization problem. The initialization model have eguations specifying that all deriva-
tives should be identically zero, which implies that a stationary solution is obtained. Two stationary points,
corresponding to different inputs, are computed. We call the stationary points A and B respectively. Point A
corresponds to operating conditions where the reactor is cold and the reaction rate is low, whereas point B
corresponds to a higher temperature where the reaction rate is high. For more information about the DAE ini-
tialization agorithm, see the IMI APl documentation.

» An optimal control problem is solved where the objective is to transfer the state of the system from stationary
point A to point B. The challenge isto ignite the reactor while avoiding uncontrolled temperatureincrease. Itis
al so demonstrated how to set parameter and variablevaluesinamodel. Moreinformation about the simultaneous
optimization algorithm can be found at IModelica.org APl documentation.

e Theoptimization result is saved to file and then the important variables are plotted.

The Python commands in this tutorial may be copied and pasted directely into a Python shell, in some cases with
minor modifications. Alternatively, you may copy the commandsinto atext file, e.g., cstr.py.

Start the tutorial by creating a working directory and copy the file $IMODELICA_HOM E/Python/jmodelica/ex-
amples/filess CSTR.mo to your working directory. An on-line version of CSTR.mo is also available (depending on
which browser you use, you may have to accept the site certificate by clicking through afew steps). If you choose
to create Python script file, saveit to the working directory.

3.2.1. Compile and instantiate a model object

The functions and classes used in the tutorial script need to be imported into the Python script. This is done by
the following Python commands. Copy them and past them either directly into you Python shell or, preferably,
into your Python script file.

i mport os. path

fromjnodelica inport initialize
fromjnodelica inport simulate
fromjnodelica inport optimze

inmport jnodelica.jm as jm
from jnodelica.conpiler inmport Optim caConpiler

i mport nunpy as N
import matplotlib.pyplot as plt

Before we can do operations on the model, such as optimizing it, the model file must be compiled and the resulting
DLL fileloaded in Python. These steps are described in more detail in the tutorial on Compilation of models.

Create a Modelica conpiler instance
oc = Optim caConpiler()

Conpile the stationary initialization nodel into a DLL and load it
init_nmodel = oc.conpile_nodel ("CSTR. CSTR Init", "CSTR np", target='ipopt')

At this point, you may open the file CSTR.mo, containing the CSTR model and the static initialization model used
in this section. Study the classes CSTR.CSTR and CSTR.CSTR_Init and make sure you understand the models.
Before proceeding, have alook at the interactive help for one of the functions you used:

16

https://svn.jmodelica.org/trunk/Python/src/jmodelica/examples/files/CSTR.mo

Getting started

In [8]: hel p(oc.conpile_nodel)
3.2.2. Solve the DAE initialization problem

In the next step, we would like to specify the first operating point, A, by means of a constant input cooling tem-
perature, and then solve the initialization problem assuming that all derivatives are zero.

Set inputs for Stationary point A
Tc_0_A = 250
init_nodel.set_value(' Tc', Tc_0_A)

Solve the DAE initialization systemw th | popt
init_result_object = initialize(init_nodel)
init_result = init_result_object.get_result_data()

(9]

t 0 stationary point A
init_result.get_variable_data('c').x[O0]

init_result.get_variable data('T).x[O0]

— 0 *

[eNe]
=

I 1 o

A
_0_A
Print some data for stationary point A
print(' *** Stationary point A ***')
print('input Tc = %' % Tc_0_A)
print('state c %' %c_0_A
print('state T = %' %T_0_A

Notice how the function set_value is used to set the value of the control input. The initialization algorithm is
invoked by calling the function ‘initialize’, which returns a result object where the initialization result is accessed
with'get_result_data and stored in'init_result'. The'initialize' function relies on the algorithm I popt for computing
the solution of the initialization problem. The values of the states corresponding to grade A can then be extracted
from the result object. Look carefully at the printoutsin the Python shell to see a printout of the stationary values.
Display the help text for the 'initialize' function and take a moment to look through it. The procedure is now
repeated for operating point B:

Set inputs for Stationary point B
Tc_0_B = 280
init_nodel.set_val ue(' Tc', Tc_0_B)

Solve the DAE initialization systemw th | popt
init_result_object = initialize(init_nodel)
init_result = init_result_object.get result_data()
re stationary point B
init_result.get_variable_data('c').x[0]
init_result.get_variable data('T).x[O0]

St
c

I 1 o

(o]
0B
0B

Print sone data for stationary point B
print(' *** Stationary point B ***')
print('input Tc = %' % Tc_0_B)
print('state ¢ = %' %c_0_B)
print('state T = %' % T_0_B)

We have now computed two stationary points for the system based on constant control inputs.

3.2.3. Solving an optimal control problem

The optimal control problem we are about to solveis given by:

150
minumj (cr -c(e))+ (777 -1 () + (73 -1 o(6)) ar

0
subject to

230<u(¢) <370
7(¢) <350

17

Getting started

and isexpressed in Optimicaformat in the class CSTR.CSTR_Opt in the CSTR.mo file above. Have alook at this
class and make sure that you understand how the optimization problem is formulated and what the objectiveis.

Direct collocation methods often require good initial guesses in order to ensure robust convergence. Since initial
guesses are needed for all discretized variables along the optimization interval, simulation provides a convenient
mean to generate state and derivative profiles given an initial guess for the control input(s). It is then convenient
to set up a dedicated model for computation of initia trajectories. In the model CSTR.CSTR_Init_Optimization
in the CSTR.mo file, a step input is filtered through a first order filter in order to generate a smooth input for the
CSTR system. Thefiltering is done in order not to excite unstable modes of the system, and in particular to avoid
sudden ignition. Notice also that the variable names in the initialization model must match those in the optimal
control model. Therefore, also the cost function isincluded in the initialization model.

Start by creating an input trajectory to be passed to the simulator:

Create the time vector
= N. linspace(1, 150., 100)
Create the input vector fromthe target input value. The
target input value is here increased in order to get a
better initial guess.
= (Tc_0_B+35) *N. ones(N. si ze(t, 0))
Create a matrix where the first colum is tinme and the second col umm represents
the input trajectory.
_traj = N transpose(N. vstack((t,u)))

S HHCSHHFHTH

Next, compile the model and set model parameters:

Conpile the optim zation initialization nodel and | oad the DLL
init_simnodel = oc.conpile_nodel ("CSTR CSTR | nit_Optim zation", "CSTR mp", target='ipopt')

Set nodel paraneters
init_simnodel.set_value('cstr.c_init',c_0_A)
init_simnodel.set_value('cstr.T_ init', T _0_A)
init_simnodel.set_value('Tc_0', Tc_0_A)
init_simnodel.set_value('c_ref',c_0_B)
init_simnodel.set_value('T_ref', T_0_B)
init_simnodel.set_value(' Tc_ref',u[0])

Having initialized the model parameters, we can simulate the model using the 'simulate’ function.

simresult_object = simulate(init_simnodel,alg args={'start_tine':0.,"'final_tinme':150.,
"input _trajectory':u_traj})
res = simresult_object.get_result_data()

Thefunction 'ssmulation’ first computes consistent initial conditions and then simulates the model in the interval O
to 150 seconds with the input trajectory specified by 'u_traj'. Notice that the arguments to the simulation function
is specified in a Python dictionary. Take a moment to read the interactive help for the 'simulate’ function.

The simulation result object is returned and to retrieve the simulation data use the method 'get_result_data, from
which you may now retrieve trajectories for plotting:

Extract variable profiles
c_init_sinFres.get_variable data('cstr.c')

T init_sinmrres.get_variable data('cstr.T)
Tc_init_simrres. get_variable data('cstr.Tc')

Plot the results

plt.figure(l)

plt.clf()

pl t. hol d(True)

plt. subpl ot (311)
plt.plot(c_init_simt,c_init_simx)
plt.grid()

pl t.yl abel (' Concentration')

pl t. subpl ot (312)
plt.plot(T_init_simt, T_init_simx)
plt.grid()

18

Getting started

plt.yl abel (' Tenperature')

pl t. subpl ot (313)
plt.plot(Tc_init_simt, Tc_init_simx)
plt.grid()

plt.yl abel (' Cooling tenperature')
plt.xlabel ("tine')

pl t.show()

Look at the plots and make sure you understand the effect of the filter. Think about alternative, better ways to
chose the input profile. Also, try to increase the value 35 that was added to the target input: how much can you
increase this value without experiencing sudden ignition of the reactor?

Once theinitial guessis generated, we compile the model containing the optimal control problem:
cstr = oc.conpil e_nodel ("CSTR. CSTR Opt", "CSTR np", target='ipopt')

We will now initialize the parameters of the model so that their values correspond to the optimization objective
of transferring the system state from operating point A to operating point B. Accordingly, we set the parameters
representing the initial values of the states to point A and the reference values in the cost function to point B:

cstr.set_value(' Tc_ref', Tc_0_B)
cstr.set_value('c_ref',c_0_B)
cstr.set_value('T_ref', T_0_B)

cstr.set_value('cstr.c_init',c_0_A)
cstr.set_value('cstr.T_init', T_0_A)

In order to solve the optimization problem, we need to specify the mesh on which the optimization is performed.
The simultaneous optimization algorithm is based on a collocation method that correspondsto afixed step implicit
Runge-K utta scheme, where the mesh defines the length of each step. Also, the number of collocation pointsin
each element, or step, needsto be provided. Thisnumber correspondsto the stage order of the Runge-K uttascheme.
The selection of mesh is analogous to the choice of step length in a one-step algorithm for solving differential
equations. Accordingly, the mesh needs to be fine-grained enough to ensure sufficiently accurate approximation
of the differential constraint. For an overview of simultaneous optimization algorithms, see[2].

Collocation-based optimization algorithms often require agood initial guessin order to achieve fast convergence.
Also, if the problem is non-conve, initialization is even more critical. Initial guesses can be provided in Optimica
by the 'initial Guess' attribute, see the CSTR.mo file for an example for this. Notice that initialization in the case
of collocation-based optimization methods means initialization of al the control and state profiles as a function
of time. In some cases, it is sufficient to use constant profiles. For this purpose, the 'initial Guess' attribute works
well. In more difficult cases, however, it may be necessary to initialize the profiles using simulation data, where
an initial guess for the input(s) has been used to generate the profiles for the dependent variables. This approach
for initializing the optimization problem is used in this tutorial.

We are now ready to solve the actual optimization problem. Thisis done by invoking the method optimize:

Initialize the nesh

n_e = 100 # Nunmber of el enents

hs = N. ones(n_e)*1./n_e # Equidi stant points

n_cp = 3; # Nunber of collocation points in each el enent

opt _result_object = optim ze(cstr,alg_args={'n_e':n_e,'hs':hs,'n_cp':n_cp,'init_traj':res})
res = opt_result_object.get_result_data()

Y ou should see the output of Ipopt in the Python shell as the algorithm iterates to find the optimal solution. Ipopt
should terminate with a message like 'Optimal solution found' or 'Solved to an acceptable level' in order for an
optimum to be found. Again, the arguments to the algorithm (number of elements, number of collocation points,
element length vector and initial guess object) are given in a Python dictionary. The optimization result object is
returned and the optimization data are stored in 'res’.

We can now retrieve the trgjectories of the variables that we intend to plot:

Extract variable profiles
c_res=res.get_variable data('cstr.c')

19

Getting started

T res=res.get_variable_data('cstr.T")
Tc_res=res.get_variable_data('cstr.Tc")

c_ref=res.get_variable data('c_ref')
T ref=res.get_variable_data(' T_ref"')
Tc_ref=res.get_variable_data(' Tc_ref')

Finally, we plot the result using the functions available in matplotlib:

plt.figure(l)

plt.clf()

pl t. hol d(True)

pl t.subpl ot (311)
plt.plot(c_res.t,c_res.x)
plt.plot(c_ref.t,c_ref.x,'--")
plt.grid()

pl t.yl abel (' Concentration')

pl t. subpl ot (312)

plt.plot(T res.t, T res.x)
plt.plot(T_ref.t, T ref.x,'--")
plt.grid()

plt.yl abel (' Tenperature')

pl t. subpl ot (313)
plt.plot(Tc_res.t, Tc_res.x)
plt.plot(Tc_ref.t,Tc_ref.x,"'--")
plt.grid()

plt.yl abel (' Cooling tenperature')
plt.xlabel ("tine')

plt.show()

Y our should now see a plot as the one below:

Figure 3.5. Optimization result

1000
900
800
7001
600
500
400
3000

360
L 3401

Concentration

[

5 380
® 360f
9 340
€320
2 300}
2280
S 260}
S 240,

20 40 60 80 100 120 140 160
time

Take a minute to analyze the optimal profiles and to answer the following questions:
1. Why isthe concentration high in the beginning of the interval?

2. Why isthe input cooling temperature high in the beginning of the interval ?
3.2.4. Verify optimal control solution

Solving optimal control problems by means of direct collocation implies that the differential equation is approxi-
mated by a discrete time counterpart. The accuracy of the solution is dependent on the method of collocation and

20

Getting started

the number of elements. In order to assess the accuracy of the discretization, we may simulate the system using
aDAE solver using the optimal control profile as input. With this approach, the state profiles are computed with
high accuracy and the result may then be compared with the profiles resulting from optimization. Notice that this
procedure does not verify the optimality of the resulting optimal control profiles, but only the accuracy of the
discretization of the dynamics.

The procedure for setting up and executing this simulation is similar to above:

Sinulate to verify the optimal solution
Set up input trajectory

t = Tc_res.t

u = Tc_res.x

u

_traj = N.transpose(N. vstack((t,u)))

Comi |l e the Moddelica nodel first to C code and
then to a dynamic library
si m nodel = oc. conpil e_nodel ("CSTR CSTR', "CSTR nmp", target ="i popt"')

sim nodel . set_value('c_init',c_0_A)
sim nodel .set_value('T_init', T _0_A)
si m nodel . set _val ue(' Tc', u[0])

simresult_object = sinulate(si mnodel, conpiler="optinica',
alg args={'start_tine':0.,"'final _tinme':150.,
"input _trajectory':u_traj})
res = simresult_object.get_result_data()

Finally, we load the simulated data and plot it to compare with the optimized trajectories:

Extract variable profiles
c_sinmrres. get_variable_data('c')

T sinFres.get _variable data('T")
Tc_sinrres. get _vari abl e_data(' Tc')

Plot the results

plt.figure(3)

plt.clf()

pl t. hol d(True)

pl t.subpl ot (311)
plt.plot(c_res.t,c_res.x,"'--")
plt.plot(c_simt,c_simx)
plt.legend(('optim zed','sinmulated'))
plt.grid()

pl t.yl abel (* Concentration')

pl t. subpl ot (312)
plt.plot(T_res.t, T res.x,"'--")
plt.plot(T_simt, T _sim x)
plt.legend(('optimzed',"'simlated'))
plt.grid()

plt.yl abel (' Tenperature')

pl t. subpl ot (313)
plt.plot(Tc_res.t,Tc_res.x,"'--")
plt.plot(Tc_simt, Tc_sim x)
plt.legend(('optim zed','sinmulated'))
plt.grid()

plt.yl abel (' Cooling tenperature')
plt.xlabel ("tinme'")

pl t.show()

Y ou should now see aplot similar to:

21

Getting started

Figure 3.6. Simulated system response

1000
900}
800
700}
600}
500
400 Tl
300O

360
2 3401

- - optimized
— simulated

Concentration

i i i
20 40 60 80 100 120 140 160

- - optimized
— simulated

=260

0 24% 20 40 60 80 100 120 140 160
5380 ‘ , , , , ; ‘

© 360 - - optimized|]
9 340t) -
€320} — simulated|]
23001 : : i
22801 B
5 260 |
© 2405 20 40 60 80 100 120 140 160

time

Discuss why the simulated trajectories differs from the optimized counterparts.

3.2.5. Exercises
After completing the tutorial you may continue to modify the optimization problem and study the results.
1. Removethe constraint on cstr.T. What is then the maximum temperature?

2. Play around with weights in the cost function. What happensif you penalize the control variable with alarger
weight? Do a parameter sweep for the control variable weight and plot the optimal profilesin the same figure.

3. Add terminal constraints (‘cstr.T(final Time)=someParameter') for the states so that they are equal to point B
at the end of the optimization interval. Now reduce the length of the optimization interval. How short can you
make the interval ?

4. Try varying the number of elements in the mesh and the number of collocation points in each interval. 2-10
collocation points are supported.

3.2.6. References

[1] G.A. Hicks and W.H. Ray. Approximation Methods for Optimal Control Synthesis. Can. J. Chem. Eng.,
40:522-529, 1971.

[2] Bieger, L., A. Cervantes, and A. Wéchter (2002): "Advancesin simultaneous strategies for dynamic optimiza-
tion." Chemical Engineering Science, 57, pp. 575-593.

4. Solving parameter estimation problems

Inthistutoria it will be demonstrated how to solve parameter estimation problems. We consider a quadruple tank
system depicted in Figure below.

22

Getting started

Figure 3.7. A schematic figure of the quadruple tank process.

Pump 1

ui

)
TTS

1-7n

1—72

Tank 4

—

Tank 2

The dynamics of the system is given by the differential equations:

. _ ﬂJ BJ Vlkl

X, =-7 2gx1+A1 Z‘g/\'3+—1 uq
k

. @ ag Vo2

X2 = 'AZ\/Zng +A2\/2£X4+ 5 U2

. _ 43 (175)k2

X3 = -g\N2gXx3 +T Uy

o Ok

Xy =g NEgXy t 7, Uy

Where the parameter values are given in the table below:

Table 3.2. Quadrupletank parameter values

Name Vaue Unit

A 4.9 cm?

a 0.03 cm?

ki 0.56 cm?vist
0.3 vemt

The states of the model are the tank water levels x1, x2, x3, and x4. The control inputs, ul and u2, are the flows
generated by the two pumps.

The Modelicamodel for the system islocated in QuadTankPack.mo. Download the file to your working directory
and open it in atext editor. Locate the class QuadTankPack. QuadTank and make sure you understand the model.

In particular, notice that all model variables and parameters are expressed in Sl units.

Measurement data, availablein gt_par_est_data.mat, has been logged in an identification experiment. Download

also thisfile to your working directory.

23

https://svn.jmodelica.org/tags/1.3b1/Python/src/jmodelica/examples/files/QuadTankPack.mo
https://svn.jmodelica.org/tags/1.3b1/Python/src/jmodelica/examples/files/qt_par_est_data.mat

Getting started

Open atext fileand nameit gt_par_est.py. Then enter the imports:

fromscipy.io.matl ab. m o inport | oadmat

import matplotlib.pyplot as plt

i mport nunpy as N

fromjnodelica inport sinulate

fromjnodelica inport optimze

from jnodelica.conpiler inmport Optim caConpiler

into the file. Next, we enter code to open the data file, extract the measurement time series and plot the measure-
ments:

Load neasurenent data fromfile
data = | oadmat (' gt _par_est_dat a. mat' , appendmat =Fal se)

Extract data series
t_neas = data['t'][6000::100,0]-60

yl meas = data['yl f'][6000::100,0]/100
y2_meas = data['y2 f'][6000::100,0]/100
y3_meas = data['y3_d'][6000::100,0]/100
y4 _meas = data['y4_d'][6000::100,0]/100

ul = data['ul_d'][6000:: 100, O]
u2 = data['u2_d'][6000:: 100, 0]

Pl ot nmeasurenents and inputs
plt.figure(l)

plt.clf()
plt.subplot(2,2,1)
plt.plot(t_neas, y3 _neas)
plt.title('x3")
plt.grid()

pl t.subplot (2,2, 2)
plt.plot(t_neas, y4 neas)
plt.title('x4")
plt.grid()

plt.subplot (2,2, 3)

pl t.plot(t_neas, yl neas)
plt.title('x1")
plt.xlabel ("t[s]"')
plt.grid()

pl t.subplot(2,2,4)
plt.plot(t_neas, y2_neas)
plt.title('x2")
plt.xlabel ("t[s]")
plt.grid()

plt.show()

plt.figure(2)
plt.clf()
plt.subplot(2,1,1)
plt.plot(t_neas, ul)
pl t. hol d(True)
plt.title('ul")
plt.grid()
plt.subplot(2,1,2)
plt.plot(t_neas, u2)
plt.title('u2")
plt.xlabel ("t[s]")
pl t. hol d(True)
plt.grid()

pl t.show()

Y ou should now see two plots showing the measurement state profiles and the control input profiles:

24

Getting started

Figure 3.8. Measured state profiles

0.029 0.031
0.030f
0.028} H o 0201
0.027} 0.028f
0.027}
0.026 0.0061
0.0251 40.025}
0.0241
0.024[10.023
00237520 30 40 50 60°%% 10 20 30 40 50 60
X2
0.068 ‘
0.070f 10.067}
0.066
0.068- 10.0651
0.066- |0.064r
0.063f
0.064 +0.062-
0.061}-
00825550 30 40 50 60°%% 10 20 30 40 50 60
tls] tls]

Figure 3.9. Input profilesused in estimation experiment

6.2 . . ql

6.0

5.8F

5.6

5.4f

5.2

S'00 10 26 30 40 50

6.2 u‘2

6.0+ N .

5.8H B

5.6 . 1

5.4 ; i

5.2 1

5'OO 10 20 ?;0 40 50 60
tls]

In order to evaluate the accuracy of nominal model parameter values, start by simulating the model, assuming that
the start values of the states are given by the state measurement at the start of the experiment. This assumption
can be expressed in the model:

nmodel Si m QuadTank
QuadTank qt;
i nput Real ul = qt.ul;
i nput Real u2 = qt.u2;
initial equation

gt.x1 = 0.0627;
gt.x2 = 0.06044;
gt.x3 = 0.024;

gt.x4 = 0.023;
end Si m QuadTank;

Notice that initial equations have been added to the model. Before the model is simulated, a matrix containing
the input trajectoriesis created:

Build input trajectory matrix for use in simulation
u = N.transpose(N. vstack((t_neas, ul, u2)))

25

Getting started

Now, the model can be simulated:

Sinul ate nodel response with nom nal paraneters
res_sim= sinul ate(' QuadTankPack. Si m QuadTank' ,
' QuadTankPack. no' ,
conpi |l er='optimca',
al g _args={'input_trajectory':u,
‘start _time':0.,
‘final _tinme':60})

The simulation result can now be extracted:

Load sinulation result

x1 sim=res_simresult_data.get_variable_data('qt.x1")
Xx2_sim=res_simresult_data.get_variable_data('qt.x2")
x3_sim=res_simresult_data.get_variable_data('qt.x3")
x4_sim=res_simresult_data.get_variable_data('qt.x4")
ul sim=res_simresult_data.get_variable data('ul')
u2_sim=res_simresult_data.get_variable _data('u2')

and then plotted:

Plot sinulation result
plt.figure(1)
plt.subplot(2,2,1)
plt.plot(x1l_simt,Xx3_sim x)
pl t.subplot (2,2, 2)
plt.plot(x2_simt,Xx4_sim x)
pl t.subplot (2,2, 3)
plt.plot(x3_simt,x1_sim x)
pl t.subplot (2,2, 4)
plt.plot(x4_simt,Xx2_sim x)
pl t.show()

plt.figure(2)
plt.subplot(2,1,1)
plt.plot(ul_simt,ul simx,"'r")
plt.subplot(2,1,2)
plt.plot(u2_simt,u2_simx,"'r")
plt.show()

The plot below shows the result of the simulation.

Figure 3.10. Smulation result for the nominal model

0.029

0.028
0.027
0.026
0.025
0.024

0.023

0.075

0.070

0.065

0.060

0.055

0.050

Here, the simulated profiles are given by the green curves. Clearly, there is amismatch in the response, especially
for the two lower tanks. Think about why the model does not match the data, i.e., which parameters may have
wrong values.

26

Getting started

The next step towards solving a parameter estimation problem isto identify which parametersto tune. Typically,
parameters which are not known precisely are selected. Also, the selected parameters need of course affect the
mismatch between model response and data, when tuned. In afirst attempt, we aim at decreasing the mismatch for
the two lower tanks, and therefore we select the lower tank outflow areas, al and a2, as parameters to optimize.
The Optimica specification for the estimation problem contained in the class QuadTankPack. QuadTank_Par Est :
optim zati on QuadTank_Par Est (objective=sun((yl_neas[i] - qt.x1(t_meas[i]))"2 +
(y2_neas[i] - qt.x2(t_neas[i]))”2 for i in 1:N_neas),
start Ti me=0, fi nal Ti me=60)

/1 Initial tank |evels

paranet er Modelica. Slunits.Length x1_0 = 0. 06255;
par anet er Modelica. Slunits.Length x2_0 = 0.06045;
par anet er Modelica. Slunits. Length x3_0 = 0. 02395;
par anet er Modelica. Slunits.Length x4_0 = 0.02325;

QuadTank qt (x1(fixed=true), x1_0=x1_0,
x2(fixed=true), x2_0=x2_0,
x3(fixed=true), x3_0=x3_0,
x4(fixed=true), x4_0=x4_0,
al(free=true,initial Guess
a2(free=true,initial Guess

0. 03e- 4, mi n=0, max=0. le-4),
0. 03e- 4, m n=0, max=0. le-4));

[/ Nunber of measurenment points
paraneter |nteger N neas = 61;
/] Vector of measurenment tines
paraneter Real t_meas[N_neas] = 0:60.0/(N_neas-1): 60;
/] Measurenent values for x1
/] Notice that dummy val ues are entered here:
[/l the real measurenent values will be set from Python
paraneter Real yl neas[N_neas] = ones(N_neas);
/] Measurenent values for x2
paranet er Real y2 neas[N_neas] = ones(N_neas);
/1 lnput trajectory for ul
PRBS1 prbsi;
/1 lnput trajectory for u2
PRBS2 prbs2;
equati on
connect (prbsl.y, qt.ul);
connect (prbs2.y, qt.u2);
end QuadTank_Par Est ;

The cost function is here given as asquared sum of the difference between the measured profilesfor x1 and x2 and
the corresponding model profiles. Also the, parameters al and a2 are set to be free, and are given initial guesses
aswell asbounds. Asfor the measurement data, parameter vectors are declared, but only dummy datais provided
in the model - the actual data values will be set from the Python script. Also, the input profiles are connected to
signal generators that outputs the same input profiles as those used in the experiment. Take some time to look at
QuadTankPack.mo and |locate the classes used above.

Before the optimization problem can be solved, the Optimica specification needs to be compiled:

Create Optimica conpiler
oc = Optim caConpil er()

Conpi | e nodel
gt _par _est = oc. conpi |l e_npdel (" QuadTankPack. QuadTank_Par Est ",
"QuadTankPack. no", t arget =" i popt ')

Next, we load the measurement data into the model:

Nunber of measurenent points
N_neas = N.size(ul, 0)

Set measurenent data into nodel

for i in range(0, N neas):
qt _par _est.set_value("t_neas["+ i+1 +"]",t_nmeas[i])
gt _par _est.set_value("yl nmeas["+ i+1 +"]",yl nmeas[i])

27

Getting started

gt _par _est.set_value("y2_neas["+ i+1 +"]",y2 nmeas[i])

We are now ready to solve the optimization problem:

Number of element in collocation algorithm
n_e = 100

Normal i zed el enent | engths

hs = N. ones(n_e)/n_e

Nunmber of collocation points

n_cp =3

Sol ve paraneter optim zation probl em

res_opt = optimze(qt_par_est,alg_args={"n_e":n_e,"n_cp":3, \
"result _nmesh":"el ement _i nt er pol ati on",
"hs": hs})

Now, lets extract the optimal values of the parameters al and a2 and print them to the console:

Extract optinmal val ues of paraneters
al opt = res_opt.result_data.get_variable_data("qt.al")
a2 _opt = res_opt.result_data.get_variabl e_data("qt.a2")

Print optinmal paraneter val ues

print('al: ' + str(al_opt.x[-1]*1e4) + 'cm2")
print('a2: ' + str(a2_opt.x[-1]*1ed4) + 'cmt2')

Y ou should get an output similar to:

al: 0.0266c¢cnM2
a2: 0.0272cnt2

The estimated values are slightly smaller than the nominal values - think about why this may be the case. Also
note that the estimated values do not necessarily correspond to the physically true values. Rather, the parameter
values are adjusted to compensate for all kinds of modeling errors in order to minimize the mismatch between
model response and measurement data.

Next we plot the optimized profiles:

Load state profiles

x1_opt = res_opt.result_data.get_variabl e_data("qt.x1")
Xx2_opt = res_opt.result_data.get_variabl e_data("qgt.x2")
x3_opt = res_opt.result_data.get_variabl e _data("qt.x3")
x4_opt = res_opt.result_data.get_variabl e_data("qgt.x4")
ul_opt = res_opt.result_data.get_variable_data("qt.ul")
u2_opt = res_opt.result_data.get_variable_data("qt.u2")

plt.figure(l)

pl t.subplot(2,2,1)

plt.plot(x3 opt.t,x3 opt.x," k")
pl t.subplot (2, 2, 2)
plt.plot(x4_opt.t,x4 opt.x,"k")
pl t.subplot (2,2, 3)

plt.plot(x1l opt.t,x1 opt.x,"'k")
pl t.subplot (2, 2,4)
plt.plot(x2_opt.t,x2_opt.x,"k")
pl t.show()

Y ou will now see a plot looking like:

28

Getting started

Figure 3.11. State profiles corresponding to estimated values of al and a2.

0.029

0.028
0.027
0.026
0.025
0.024
0.023

0.075

0.070

0.065

0.060

0.055

0.050

The profiles corresponding to the estimated values of al and a2 are shown in black curves. As can be seen, the
match between the model response and the measurement data has been significantly increased. Is the behavior of
the model consistent with the estimated parameter values?

Never the less, There is still a mismatch for the upper tanks, especialy for tank 4. In order to improve the
match, a second estimation problem may be formulated, where the parameters al, a2, a3, a4 are free optimization
variables, and where the squared errors of all four tank levels are penalized. Take a minute to locate the class
QuadTankPack. QuadTank_Par Est 2 and make sure that you understand the model. Solve the optimization prob-
lem by typing the Python code:

Conpi |l e second paraneter estimation nodel
qt _par_est2 = oc. conpi | e_nodel (" QuadTankPack. QuadTank_Par Est 2",
"QuadTankPack. no", t arget =' i popt"')

Nunmber of neasurenent points
N_rmeas = N.size(ul, 0)

Set measurenent data into nodel
for i in range(0, N nmeas):
gt _par _est2.set_value("t_neas["+ i+1 +"]",t_neas[i])
qt _par_est2.set_value("yl nmeas["+ i+1 +"]",yl neas[i])
gt _par _est2.set_value("y2_nmeas["+ i+1 +"]",y2 _neas[i])
qt _par_est2.set_value("y3 neas["+ i +1 +"]",y3 neas[i])
gt _par _est2.set_value("y4 nmeas["+ i+1 +"]",y4 _neas[i])
Sol ve paraneter estinmation problem
res_opt2 = optimze(qt_par_est2,alg_args={"n_e":n_e,"n_cp":3, \
"result _mesh":"el ement _i nterpol ation", "hs": hs})

Next, we print the optimal parameter values:

Get optimal paraneter val ues

al opt2 = res_opt2.result_data.get_variable_data("qt.al")
a2_opt2 = res_opt2.result_data.get_variabl e_data("qt.a2")
a3 _ opt2 = res_opt2.result_data.get_variabl e_data("qt.a3")
a4 _opt2 = res_opt2.result_data.get_variabl e _data("qt.ad")

Print optinmal paraneter val ues

print('al:' + str(al_opt2.x[-1]*1ed4) + 'cnt2')
print('a2:' + str(a2_opt2.x[-1]*1e4) + 'cm2")
print('a3:"' + str(a3_opt2.x[-1]*1ed4) + 'cnt2')
print('a4:' + str(ad4_opt2.x[-1]*1ed4) + 'cm2")

The output in the console should be similar to:

29

Getting started

al: 0. 0266¢cm'2
a2: 0. 0271cnt2
a3: 0.0301cm'2
a4: 0. 0293cnt2

Think about the result - can you explain why the estimated value of a4 is dightly smaller than the nominal value?
Finally, plot the state profiles corresponding to the estimated parameters:

Extract state and input profiles

x1_opt2 = res_opt2.result_data.get_variabl e_data("qt.x1")
X2 _opt2 = res_opt2.result_data.get_variabl e_data("qt.x2")
x3_opt2 = res_opt2.result_data.get_variabl e_data("qt.x3")
x4 _opt2 = res_opt2.result_data.get_variabl e_data("qt.x4")
ul opt2 = res_opt2.result_data.get_variable_data("qt.ul")
u2 opt2 = res_opt2.result_data.get_variable data("qt.u2")
Pl ot

plt.figure(l)

pl t.subplot(2,2,1)
plt.plot(x3_opt2.t,x3 opt2.x,"'r")
pl t.subplot (2, 2, 2)
plt.plot(x4_opt2.t,x4 opt2.x,"'r")
pl t.subplot (2,2, 3)

plt.plot(x1l _opt2.t,x1 opt2.x,"'r")
pl t.subplot(2,2,4)
plt.plot(x2_opt2.t,x2_opt2.x,"'r")
pl t.show()

The resulting plot should look like:

Figure 3.12. State profiles corresponding to estimated values of al, a2, a3 and a4

0.029

0.028
0.027
0.026
0.025
0.024

0.023

0.075

0.070

0.065

0.060

0.055

0'0500 10 20 30 40 50 600'0520 10 20 30 40 50 60

tls] tls]

Thered curves represent the case where al, a2, a3 and a4 has been estimated.

Take amoment to think about the results. Are there other parametersthat could have been selected for estimation?

5. Working with file I1/O

In this tutorial you will learn how to load simulation/optimization results.

5.1. I/O functionality

Themodulej nodel i ca. i o provides useful functionsfor exporting and loading simulation or optimization results
from Dymola. The result files can be in Dymola textural or Dymola binary format. The variable data is saved

30

Getting started

together with the variable names which makes it possible to load the result files and match result data with a
specific variable.

5.2. Loading result data

To load aresult data file saved using the export functionality j nodel i ca. i 0. export _resul t _dynol a the class
Resul t Dynol aText ual inthesamemodule, j model i ca. i o, isused. The result object can then be used to retrieve
data for a specific variable.

Load the CSTR results
res = jnodelica.io.Resul t Dynol aText ual (' CSTR_CSTR Opt _result.txt"')

Get variable data for T ref
res.get_variable data(' T_ref').x
>> array([280.099198, 280.099198])

Thereisasimilar function for retrieving results from afile in Dymola binary format.

6. Setting and saving model parameters

Thistutorial shows how to set model parameters and how to load and save parameter data from/to XML files.

6.1. Model parameter XML files

The model parameter meta data and values are saved in XML files which are generated during the compilation.
They follow the name convention:

* <model class name>.xml
e <model class name>_values.xml

The parameter meta data is saved in <modé class name>.xml and the parameter values in <model class
name>_values.xml. The name of the parameter is used to map a parameter value in the valuesfile to a parameter
specification.

6.2. Get and set value

The model parameters can be accessed with viathej ni . Model interface. It is possibleto look at the whole vector
of, for example, al real parameters in the model or one specific parameter. Accessing one specific parameter
requires that the parameter name is known.

Thefollowing code example assumes the CSTR model has been compiled and the DLL fileloadedinj ni . Model .

Get independent real paraneter vector
cstr_nodel . get _real pi ()

>> array([1.66666667e-03, 1.00000000e+03, 1.66666667e- 03,
3.50000000e+02, 2.19000000e-01, 1.20000000e+09,
8. 75000000e+03, 9. 15600000e+02, 1.00000000e+03,
2.39000000e+02, -5.00000000e+04, 1.00000000e+02,
1.00000000e+03, 3.50000000e+02, 5. 00000000e+02,
3.20000000e+02, 3.00000000e+02, 1.00000000e+00,
1.00000000e+00, 1.00000000e+00, 0. 00000000e+00,
1. 50000000e+02])

Get

>> 500.0

Set

i ndependent par anet er

cstr_nodel . set _val ue(' c_ref
c_ref has now changed

cstr_nodel . get _value('c_ref')

>> 450.0

i ndependent paraneter c_ref
cstr_nodel . get _val ue('c_ref")

450)

Getting started

6.3. Loading from and saving to XML

6.3.1. Loading XML values file

It is possible to load the values from an XML file as is done automatically when thej mi . Model object was first
created. If, for example, there were many local changes to parameters it could be desirable to reset everything as
it was from the beginning.

Set paraneter

cstr_nodel . set _value('c_ref', 450)
cstr_nodel . get _value('c_ref')

>> 450. 0

Load values XML file

cstr_nodel . | oad_paramet ers_from XM_()
Paranmeter has now been reset
cstr_nodel . get _value('c_ref')

>> 500. 0

Default behaviour is to load the same file as was created during compilation. If another file should be used this
must be passed to the method.

Load other XM. file
cstr_nodel . | oad_paraneters_from XM_(' new_val ues. xm ')

6.3.2. Writing to XML values file

Setting a parameter value with Model . set _val ue only changes the value in the vector loaded when j ni . Model
was created, which means that they will not be saved. To save al changes made to parameters in a model, the
values have to be written to the XML valuesfile.

Set paraneter

cstr_nodel . set _value('c_ref', 450)

Save paraneters to val ues XM

cstr_nodel .write_paraneters_to_ XM ()

Changed paraneter has now been saved in XML file
cstr_nodel . get _val ue('c_ref")

>> 450. 0

If wite_parameters_to_XM.() is caled without arguments the values will be written to the XML file which
was created when the model was compiled (following the name conventions mentioned above). It is also possible
to save the changesin anew XML file. Thisis quite convenient since different parameter value settings can easily
be saved and loaded in the model.

Save to specific XM_ file
cstr_nodel .write_paraneters_to XM ('test_val ues. xnml')

32

Chapter 4. FMI Interface

FMI (Functional Mock-up Interface) is a standard for exchanging models between different modeling and sim-
ulation environments. FMI defines a model execution interface consisting of a set of C-function signatures for
handling the communication between the model and a simulation environment. Models are presented as ODES
with time, state and step events. FMI also specifies that all information related to a model, except the equations,
should be stored in an XML formated text-file. The format is specified in the standard and specifically contains
information about the variables, names, identifiers, types and start attributes.

A model is distributed in a zip-file with the extension ".fmu’, containing several files. These zip-files containing
the models are called FMUs (Functional Mock-up Units). The important filesin an FMU are mainly the XML-
file, which contains the definitions of all variables and then files containing the C-functions which can be pro-
vided in source and/or binary form. FMI standard also supports providing documentation and resources togeth-
er with the FMU. For more information regarding the FMI standard, please visit http://www.functional -mock-
up-interface.org/.

1. Overview of JModelica.org FMI Python package

The JModelica.org interface to FMI is written in Python and is intended to be a close copy of the defined C-
interface for an FMU and provides classes and functions for interacting with FM Us.

The IModelica.org platform offers a Pythonic and convenient interface for FMUs which can be used to connect
other simulation software. IModelica.org also offers a connection to Assimulo, the default simulation package
included in IModelica.org so that FMUs can easily be simulated.

The interface is located in j nodelica. frmi and consist of the class FM Mbdel together with methods for
unzipping the FMU and for writing the simulation results. Connected to this interface is a wrapper for
JModelica.org's simulation package to enable an easy simulation of the FMUs. The simulation wrapper islocated
inj model i ca. si nul ati on. assi nul o, FM ODE.

In the table below is alist of the FMI C-interface and its counterpart in the IModelica.org Python package. We
have adapted the name convention of lowercase letters and underscores separating words. For methods with no
calculations, as for example f i (Get / Set) Cont i nuousSt at es they are instead of different methods, connected
with a property. In the table, alack of parenthesisindicates that the method is instead a property.

Table4.1. Conversion table.

FMI C-Interface

JMoadelica.org FMI Python Interface

const char* fmiGetM odel TypesPlatform()

string FMIModel.model_types platform

const char* fmiGetVersion()

string FMIModel.version

fmiComponent fmilnstantiateM odel(...)

FMIModel.__init__()

void fmiFreeM odel I nstance(fmi Component c)

FMIModel.__del_ ()

fmi Status fmi SetDebugL ogging(...)

none FMIModel.set_debug_logging(flag)

fmi Status fmi SetTime(...)

FMIModel.time

fmi Status fmi (Get/Set) ContinuousStates(...)

FMIModel.continuous_states

fmi Status fmi Compl etedI ntegrator Step(...)

boolean FMIModel.completed integrator_step()

fmi Status fmi SetReal/I nteger/Bool ean/String(...)

none FMIModel.set_real/integer/bool ean/
string(val ueref,val ues)

fmiStatus fmilnitialize(...)

none FMIModel .initialize() (also sets the start at-
tributes)

struct fmiEventinfo

FMIModel.get_event_info()

fmiStatus fmiGetDerivatives(...)

numpy.array FMIModel.get_derivatives()

33

FMI Interface

FMI C-Interface JModelica.org FMI Python Interface
fmi Status fmi GetEventIndicators(...) numpy.array FMIModel.get_event_indicators()
fmi Status fmi GetReal/Integer/Bool ean/String(...) numpy.array FMIModel.get_real/integer/boolean/
string(val ueref)
fmi Status fmiEventUpdate(...) none FMIModel.event_update()
fmi Status fmi GetNominal ContinuousStates(...) FMIModel.nominal_continuous_states
fmiStatus fmiGetStateV al ueReferences(...) numpy.array FMIModel.get_state value references()
fmi Status fmi Terminate(...) FMIModel.__del_ ()

If logging is set to Tr ue the log can be retrieved with the method,

FM Model . get _| og()

Documentation of the functions can also be accessed interactively from | Python by using for instance,

FM Model . get _real ?

Thereisalso aone-to-one map to the C-functions, meaning that there is an option to use the low-level C-functions
asthey are specified in the standard instead of using our wrapping of thefunctions. Thesefunctionsare also located
in FM Mbdel and is named with aleading underscore together with the same name as specified in the standard.

2. Examples

In the next two sections, it will be shown how to use the IM odelica.org platform both for simulation of an FMU us-
ing the native Python interface and how to simulate an FM U using IModelica.org's simulation package, Assimulo.

The Python commands in these examples may be copied and pasted directly into a Python shell, in some cases
with minor modifications. Alternatively, they may be copied into atext file, which also is the recommended way.

2.1. Simulation using the native FMI interface

This example shows how to use the native IModelica.org FMI interface for smulation of an FMU. The FMU that
isto besimulated isthe bouncing ball examplefrom QtronicsFMU SDK (http://www.gtronic.de/en/fmusdk.html).
This example is written similar to the example in the documentation of the 'Functional Mock-up Interface for
Model Exchange' version 1.0 (http://www.functiona -mockup-interface.org/). The bouncing ball model is to be
simulated using the explicit Euler method with event detection.

The example can aso be found in the Python examples catalog in the IModelica.org platform.

The bouncing ball consists of two equations,

h=uv
U=—g

and one event function (also commonly called root function),
h>0

Where the ball bounces and lose some of its energy according to,
Vg = —EUVp

Here, his the height, g the gravity, v the velocity and e a dimensionless parameter. The starting values are, h=1
and v=0 and for the parameters, e=0.7 and g = 9.81.

2.1.1. Implementation

Start by importing the necessary modules,

FMI Interface

i mport nunpy as N
import pylab as P #Used for plotting
fromjnodelica.fm inport FM Mddel #The FM Interface

Next, the FMU isto be loaded and initialized,

#Load the FMJ by specifying the fmu together with the path.
bounci ng_fmu = FM Model (' / pat h/ t o/ FMJ bounci ngBal | . f mu')

Tstart
Tend

0.5 #The start tinme.
3.0 #The final sinulation tine.

H* #

bouncing frmu.time = Tstart #Set the start tinme before the initialization.
#(Defaults to 0.0)

bouncing_fmu.initialize() #lnitialize the nodel. Also sets all the start
#attributes defined in the XM. file.

The first line loads the FMU and connects the C-functions of the model to Python together with loading the
information from the XML-file. The start time also needs to be specified by setting the property t i re. The model
isaso initialized, which must be done before the simulation is started.

Notethat if the start timeis not specified, FM Model triesto find the starting timein the XML-file structure 'default
experiment' and if successful starts the simulation from that time. Also if the XML-file does not contain any
information about the default experiment the simulation is started from time zero.

Then information about the first step isretrieved and stored for later use.

#Cet Conti nuous States

X = bounci ng_f nmu. conti nuous_st at es

#Cet the Nomi nal Val ues

x_nom nal = bounci ng_f mu. nom nal _conti nuous_st at es
#Cet the Event Indicators

event _ind = bounci ng_fmu. get _event i ndi cators()

#Val ues for the solution
vref = [bouncing_fmu. get_val ueref('h')]
[bounci ng_f mu. get _val ueref ('v')]

+\

#Retrieve the valureferences for the
#values 'h' and 'v't_sol = [Tstart]
sol = [bounci ng_fnu.get_real (vref)]

Here the continuous states together with the nominal values and the event indicators are stored to be used in the
integration loop. In our case the nominal values are all equal to one. This information is available in the XML-
file. We aso create lists which are used for storing the result. The final step before the integration is started is
to define the step-size.

tinme = Tstart
Tnext = Tend #Used for tine events
dt = 0.01 #Step-size

We are now ready to create our main integration loop where the solution is advanced using the explicit Euler
method.

#Mai n integration | oop.

while tinme < Tend and not bounci ng_fnmu. get _event _info().term nateSi nul ati on:
#Compute the derivative of the previous step f(x(n), t(n))
dx = bounci ng_f nmu. get _derivatives()

#Advance
h = min(dt, Tnext-tine)
time =time + h

#Set the tinme
bouncing fru.tinme = tinme

#Set the inputs at the current time (if any)
#bounci ng_f mu. set _real , set _i nt eger, set _bool ean, set _string (val ueref, val ues)

35

FMI Interface

#Set the states at t = time (Performthe step using x(n+1)=x(n)+hf(x(n), t(n))
X = X + h*dx
bounci ng_f mu. conti nuous_states = x

Thisisthe integration loop for advancing the solution one step. The loop continues until the final time have been
reached or if the FMU reported that the simulation isto be terminated. At the start of the loop the derivatives of the
continuous states are retrieved and then the simulation timeisincremented by the step-size and set to the model. It
could also be the case that the model is depended on inputswhich can be set usingtheset _(real /...) methods.

Note that only variables defined in the XML-file to be inputs can be set using the set _(real /...) methods
according to the FMI specification.

The step is performed by calculating the new states (x+h* dx) and setting the valuesinto the model. As our model,
the bouncing ball also consist of event functions which needs to be monitored during the simulation, we have to
check the indicators which is done below.

#Get the event indicators at t = tine
event _i nd_new = bounci ng_f nmu. get _event _i ndi cat ors()

#l nf orm t he nodel about an accepted step and check for step events
step_event = bounci ng_f nu. conpl et ed_i nt egrat or _step()

#Check for tine and state events

time_event = abs(tinme-Tnext) <= 1.e-10

state_event = True if True in ((event_ind_new>0.0) != (event_ind>0.0))\
el se Fal se

Events can be, time, state or step events. The time events are checked by continuously monitor the current time
and the next time event (Tnext). State events are checked against sign changes of the event functions. Step events
are monitored in the FMU, in the method conpl et ed_i nt egr at or _st ep() and return Trueif any event handling
isnecessary. If an event have occurred, it needs to be handled, see below.

#Event handl i ng
if step_event or tinme_event or state_event:

el nfo = bounci ng_f nu. get _event _i nfo()
elnfo.iterati onConverged = Fal se

#Event iteration

whil e elnfo.iterationConverged == Fal se:
bounci ng_frmu. event _update('0') #Stops at each event iteration
el nfo = bounci ng_f nu. get _event _i nfo()

#Retrieve solutions (if needed)

if elnfo.iterati onConverged == Fal se:
#bounci ng_f mu. get _real , get _i nt eger, get _bool ean, get _stri ng(val ueref)
pass

#Check if the event affected the state values and if so sets them
i f el nfo. stateVal uesChanged:
X = bounci ng_f mu. cont i nuous_st at es

#Get new nom nal val ues.
i f el nfo. stateVal ueRef er encesChanged:
atol = 0.01*rtol *bounci ng_f mu. nom nal _cont i nuous_st at es

#Check for new tine event
i f el nfo.upcom ngTi meEvent :

Tnext = m n(el nfo. next Event Ti me, Tend)
el se:

Tnext = Tend

If an event occurred, we enter the iteration loop where we loop until the solution of the new states have converged.
During this iteration we can also retrieve the intermediate values with the normal get methods. At this point
el nf o contains information about the changes made in the iteration. If the state values have changed, they are
retrieved. If the state references have changed, meaning that the state variables no longer have the same meaning

36

FMI Interface

as before by pointing to another set of continuous variables in the model, for example in the case with dynamic
state selection, new absolute tolerances are cal culated with the new nominal values. Finally the model is checked
for anew time event.

event _ind = event _i nd_new

#Retrieve solutions at t=tine for outputs
#bounci ng_f mu. get _real , get _i nt eger, get _bool ean, get _stri ng (val ueref)

t_sol += [tine]
sol += [bounci ng_frmu. get _real (vref)]

In the end of the loop, the solution is stored and the old event indicators are stored for use in the next loop.

After the loop have finished, by reaching the final time, we plot the ssmulation results

#Pl ot the hei ght

P.figure(1)

P.plot(t_sol,N array(sol)[:,0])
P.titl e(bouncing_fnu. get _nane())
P.yl abel (' Height (m)"')

P. xl abel (' Tine (s)')

#Pl ot the velocity

.figure(2)

.plot(t_sol,N array(sol)[:,1])
.title(bouncing fnu.get_nane())
.yl abel (' Velocity (ms)"')

.xl abel (' Time (s)')

. show()

U TUTUTUTUDO

and the figure below shows the results.

Figure4.1. Smulation result

bouncingBall
1.0 T T

0.81

0.6

0.41

Height (m)

0.2r

0.0

045 1.0 1.5 2.0 2.5 3.0
Time (s)

bouncingBall

Velocity (m/s)

Time (s)

37

FMI Interface

2.2. Example using a compiled FMU

This example will show how to use the IModelica.org's FMI-interface together with its smulation package, As-
simulo. The FMU to be simulated is the full Robot from the Modelica standard library (3.1) where it is located
in Mechani cs. Mul ti Body. Exanpl es. Syst ens. Robot R3. It consists of brakes, motors, gears and path planning.
The model consists of 36 continuous states and around 700 algebraic variables together with 98 event functions
and also afew thousand constants/parameters. The FMU was generated using Dymola 7.4.

Figure 4.2. Full Robot

pathPlanning
L/
B axes
axish
axisCortrolBusG T— .
] mechanics
S
axizCortroBuss —
=
L N
” axizd g
“ wisCortrolBusd — 4
i = 3
E aiEd 2
axisCortroBus3 T— U
h q
axizl
axizControlBus2 %_
aig
axizControlBuz1 %—

2.2.1. Implementation

We start by importing the necessary method and module,

fromjnodelica inport sinulate
i mport pylab as P

The si nul at e method is a high-level method for simulation where the input are the model of interest together
with options for the algorithm and options for the solver. We are interested in simulating the Robot from time 0.0
to 1.8 using 1000 communication points. Thisinformation is specified in adictionary called al g_ar gs where all
the algorithms options are specified. For the solver options there is another dictionary called sol ver _ar gs, where
for exampl e the tol erances can be specified. Information regarding the solver arguments can be found here, http://
www.jmodelica.org/assimulo and a sel ection of solver arguments can be found in the table below. Currently only
the solver CVode is supported.

Table 4.2. Selection of solver argumentsfor CVode

Argument Option
discr (Discretization method) Adams/ BDF (string), (default BDF)
iter (Iteration method) Newton / FixedPoint (string), (default Newton)
maxord (The maximum order) Positive float (max 5 for BDF and 12 for Adams)
write_cont (Turn on continuous writing of result) Boolean (default True)
rtol (Relative Tolerance) Float (default valuein XML-file or 1.0e-4)
atol (Absolute Tolerance(s)) Float or Array of Floats (default

0.01*rtol* nominal_continuous_states)

38

FMI Interface

In the code below, the simulation options are passed on to si nul at e

si mRobot = sinul ate(' Robot.fmu', alg_args={'final_time':1.8,
' num_communi cati on_poi nts':1000})

This preforms the simulation and the statistics will be printed in the prompt.

The simulation result can then be retrieved from the result object sinRobot by caling the method
get _result_data().

res = simres.get_result_data()

To retrieve data about a variable from the result data (res), use the method get _vari abl e_dat a together with
the name of the variable.

dgl
dq6

res.get_variabl e_data(' der(nechanics.q[1])")
res. get_vari abl e_dat a(' der (nmechani cs.q[6])")

Now we have |oaded and retrieved the variables of interest. So lets plot them.

P. pl ot (dql.t, dqgl. x, dg6.t, dg6. x)

P.1 egend([' der(nechanics.q[1])"', "' der(nmechanics.qg[6])'])
P. xl abel (' Time (s)')

P.yl abel (' Joint Velocity (rad/s)"')

P.title('Full Robot')

P. show()

Below is the resulting figure together with a comparison from the simulation result generated by Dymola.

Figure 4.3. Full Robot Results

Full Robot

— der(mechanics.q[1])
— der(mechanics.q[6])

Joint velocity (rad/s)

_0'3.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (s)

39

FMI Interface

Figure 4.4. Comparison with Dymola

Cornparisan with Dyrnola

2.DE-4—| der(mechanics.gq[1]) - mechanics. der(g[1]) |

1.6E-4+

1.2E-44

3.0E-5

Jaoint Welocity (rad/s)

4.0E-5

-4.0E-5

T T T T T T T T
0.0 0.4 0.s 1.2 16
Tirne (5]

40

Chapter 5. High-level functions:
Initialize, simulate and optimize

The purpose of the high-level functionsisto provide aflexible user interface to initializing, ssimulating and opti-
mizing amodel. In its simplest form, the functions can be used with all arguments set to default values requiring
very few user inputs. For more complex usage there are a number of options that can be set which enables more
user control over the course of events.

1. Overview

This section will give a brief overview to the high-level functions, which algorithms are available at the moment,
how to change settings and how the return argument is composed. The section ends with a short simulation exam-
ple, but the genera principle of the example also appliesfor thei ni ti al i ze and opt i ni ze functions.

1.1. Importing the high-level functions

Theinitialize, sinmulate and optin ze functions are al located in the package j nodel i ca. There are two
main ways of making them available in the Python shell or in a script

» Import the package jmodelica. This will create a new namespace with all attributes from the j nodel i ca
package. To use any of the functions, the package name must then be used as a prefix.

inport the optim ze function by inmporting jnodelica
i mport j nodelica

optim ze is now avail abl e
j model i ca. optim ze
<function optimze at OxO5FE8970>

so is sinulate and initialize

j model i ca. si mul ate

<function simulate at OxO05FF4FB0>
jmodelica.initialize

<function initialize at OxO5FF6030>

» Import aspecific function. Using thef r omstatement a specific function will beimported in the current names-
pace.

inmport the simulate function from jnodelica
fromjnodelica inport simulate

type simulate and hit enter

simul at e
<function sinmulate at 0xO5FF8170>

Note that neither opti mi ze norini tial i ze isavailable now, they must also be imported explicitly.

type optimze and hit enter
NarmeError: name 'optim ze' is not defined

inport optimze

fromjnodelica inport optimze
optimze

<function optim ze at OxO5FEDAFO>

1.2. Default arguments

1.2.1. Function arguments

The only required input to any of the high-level functions is the model object, the rest of the arguments all have
default values. The default valuesarelisted in the docstring of the function. Using theinteractive help in the Python

41

High-level functions: initial-
ize, simulate and optimize

shell or looking at the API documentation will display the docstring for a certain function. It is then possible to
see what arguments are available and their default values.

docstring for sinmulate
Docstri ng:
Conpact function for nodel sinulation.

The intention with this function is to wap nodel conpilation, creation of

a nodel object and sinmulation in one function call. The sinulation

met hod depends on which algorithmis used, this can be set with the

function argunent 'algorithm . Arguments for the algorithm and sol ver are
passed as dicts. Wiich argunments that are valid depends on which al gorithm

is used, see the algorithminplenentation in algorithmdrivers.py for details.

The default algorithmfor this function is Assinul oAl g.

The sinplest way of using the function is to pass the nodel nane and path
to the nodel file (a jm.Mdel is enough if nodel is already conpiled) and
use the default values for all other argunents.

Par aneters: :

nmodel - -
Model object or nodel nanme (supply nodel name if nodel shoul d be
(re)conpiled, then nmo-file must al so be provi ded)

file_name --
Path to nodel file or list of paths to nodel files.
Default: enpty string (no conpil ation)

conpiler --
Set conpiler that nodel should be conpiled with, 'nodelica or
"optimca'.
Defaul t: 'nodelica'

conpi l er_target --
Target argunment to conpiler.
Default: 'ipopt'

conpi | er _options --
Dict with options for the conpiler (see options.xm for possible
val ues) .
Default: enpty dict

al gorithm --
The al gorithm which will be used for the simulation is
speci fied by passing the algorithmclass in this argunent. The
al gorithmclass can be any class which inplenments the abstract
class Al gorithnBase (found in algorithmdrivers.py). In this way
it is possible to wite own algorithnms and use themwith this
function.
Defaul t: Assinul oAl g

alg_args --
Al'l argunents for the chosen al gorithm should be listed in this dict.
Valid argunments depend on the al gorithm chosen, see al gorithm
impl emrentation in algorithmdrivers.py for details.
Default: enpty dict

sol ver _args --
Al'l argunments for the chosen sol ver should be listed in this dict.
Valid argunents depend on the chosen al gorithm and possi bly which
sol ver has been selected for the algorithm See algorithm
impl ementation in algorithmdrivers.py for details.
Default: enpty dict

Ret urns: :

Result obj ect, subclass of algorithmdrivers. Resul t Base.

Theal g_args and sol ver _ar gs are arguments for the algorithm and solver chosen, they will be passed on to the
algorithm in the high-level function call. The next section will list the al g_ar gs options for al algorithms and
their default values. The sol ver _ar gs argument will be explained in the section after that.

42

www.jmodelica.org

High-level functions: initial-
ize, simulate and optimize

1.2.2. Algorithm argument ai g_args

The content of the al g_ar gs argument is different depending on which algorithm is used. The argument isadict
with default values for all options. The following tables will list the options available in the al g_ar gs argument

for each algorithm.

Tableb5.1. al g_args optionsfor Assi mul oAl g

gument should be a matrix where the first
column represents time and the following
columns represents input trajectory data.

Option Description Default value
start_tinme Simulation start time. 0.0
final _time Simulation stop time. 1.0
num_conmuni cat i on_poi nts Number of points where the solutionisre- |500
turned. If set to O the integrator will return
a it'sinternal steps.
sol ver Set which solver to use with classnameas |'IDA'
string. This determines whether a DAE or
ODE problem will be created.
i nput _trajectory Trajectory datafor model inputs. Thear- | An empty matrix,

i.e., noinput trajec-
tories.

gument should be a matrix where the first
column represents time and the following
columns represents input trajectory data. If
thei nput _tr aj ect ory is set the property

i nput _nanes insol ver _ar gs must be set
and reflect the variables for which the input
is going to be adjusted.

initialize Doinitialization if True, skip initialization |True
if False.
Table5.2. al g_args optionsfor Assi nul oFM Al g
Option Description Default value
start_time Simulation start time. 0.0
final _time Simulation stop time. 10
num comuni cati on_poi nts Number of points where the solutionisre- {500
turned. If set to O the integrator will return
at it'sinternal steps.
sol ver Set which solver to use with classnameas |'CVode
string.
input _trajectory Trajectory datafor model inputs. Thear- | An empty matrix,

i.e., noinput trgjec-
tories.

Table5.3. al g_args OptiOI’]SfOi’ Col | ocat i onLagr angePol ynoni al sAl g

Option Description Default value
n_e Number of finite e ements. 50
n_cp Number of collocation points. 3
hs Vector containing the normalized element | Equidistant points

lengths.

using default n_e.

bl ocki ng_factors

Blocking factor vector.

None (not used)

init_traj

A reference to an object of type Resul t -
Dynol aText ual Or Resul t Dynol aBi nary

None (i.e. not used,
Set this argument to

43

High-level functions: initial-
ize, simulate and optimize

Option Description Default value
containing variable trgjectoriesused to ini- | activate initializa-
tialize the optimization problem. tion)

resul t_mesh Determines which function will be used ‘default’

to get the solution trajectories. Possible
values are, ‘el ement _i nt er pol ati on’,
‘mesh_i nterpol ati on' or 'def aul t'. See
optim zation. i popt for moreinfo.

result_file_name Name of result file. Empty string (default
generated file name
will be used)

resul t _format Format of result file. ‘txt'

n_i nterpol ati on_poi nts The number of pointsin each finite el- None

ement at which the result is returned.
Only availablefor resul t _mesh =
"el ement _interpolation'.

1.2.3. Algorithm argument sol ver _args

The solver_args argument is a dict of options for the solver selected for the algorithm. The options depend on
which solver has been chosen and the best way to find what options are available is to check the documentation
for the specific solver. One limitation is that the options in the solver must be implemented as Python properties.

The solversand corresponding options availablein the Assimul o package can be found on the Assimulo web page.

1.3. Result object

Every agorithm returns its own result object and al result objects have a common base class
j model i ca. al gorithm drivers. Resul t Base. This means that no matter which agorithm is used in the high-
level function, the function will always return an object which can be manipulated with the methods and properties
of the Resul t Base class.

Table5.4. Thej nodel i ca. al gorithm drivers. Resul t Base class

Method Property Description
get _nodel () model Thej model i ca. j mi . Model object that was used in the
algorithm.
get _result_file_name()|result_file_nane The name of the result file created on the file system.
get _sol ver () sol ver The solver used in the algorithm.
get _result_data() result_data The result data object containing the whole initializa-
tion, simulation or optimization result matrix.

1.4. Algorithms

The adgorithms that are used in the high-level functions are implemented as classes in the
module jrodelica.algorithmdrivers. They are al subclasses of the base agorithm class
jmodel i ca. al gorithmdrivers. Al gorit hnBase which contains methodsthat all algorithm classes must imple-
ment. The currently available algorithms are displayed in the table below.

Table 5.5. Algorithms accessible from high-level functions

Algorithm Usein Default Returns
Assi mul oAl g simul ate yes Assi mul 0Si nResul t
Assi mul oFM Al g simul at e no Assi nul 0Si nResul t

www.jmodelica.org/page/199

High-level functions: initial-
ize, simulate and optimize

Algorithm Usein Default Returns
Col | ocat i onLagr angePol ynomi al - optim ze yes Col | ocat i onLagr angePol ynomi al -
sAl g sResul t
| poptinitializationAlg initialize yes | popt | nitResult
JFSInitAl g initialize no JFSI ni t Resul t

1.5. Short simulation example

Here is a short example which will demonstrate how to use the high-level function si nul at e. The RLC circuit
model will be used in the example. This model and a Python script which runs the example can be found in the
j model i ca. exanpl es package.

Start by creating the model object:

The nodel nane and no-file
nmodel _nanme = '"RLC Circuit'
mo_file = "RLC Gircuit. o'

Create jm . Mdel object
fromjnodelica inport jm
rlc_model = jm.Mdel (nmodel _nane, no_file)

Then import the si mul at e function and simulate using al default arguments, this means that the Assi nmul oAl g
algorithm will be used. Save the result object in avariable.

Inport sinmulate
fromjnodelica inport simnulate

Sinulate with default arguments and save the result object in a variable
simres = sinmul ate(nodel _nanme, nofile)

The result data can then be extracted from the result object and plotted.

CGet the result data and plot sonme signals

res = simres.result_data

sine_y = res.get_variable_data('sine.y")
resistor_v = res.get_variable_data('resistor.v')
inductorl_ i = res.get_variable data('inductorl.i')

Figure5.1. Result data from a simulation of s of the RLC Circuit

1.5 ;
— sine.y
— resistor.v
1or — inductorl.i|]
0.5
0.0
—-0.5}
-1.0}
~130 0.2 0.4 0.6 0.8 1.0

The default simulation time for the Assi nul oAl g algorithm is 1s. This can be changed by altering the algorithm
argument 'fi nal _ti me'

45

High-level functions: initial-
ize, simulate and optimize

Simulate again, this time with '"final _tine' set to 30s
simres = simul ate(nodel _nanme, nofile), alg args={'final _tine':30})

Plotting with the same commands gives the result which can be seen in the figure below.

Figure5.2. Result data from a ssimulation of 30s of the RLC Circuit

1.0 T T T M L LT 1+ T T 1 T T 1
n ﬂ ﬂ — sine.y
— resistor.v
— inductorl.i
0.5

i

“

-0.51

QARG

46

Chapter 6. Advanced topics

1. Tutorial on Abstract Syntax Trees (ASTS)
1.1. About Abstract Syntax Trees

A fundamental data structure in most compilersisthe Abstract Syntax Tree (AST). An AST serves as an abstract
representation of a computer program and is often used in a compiler to perform analyses (e.g., binding namesto
declarations and checking type correctness of a program) and as a basis for code generation.

Three different ASTs are used in the IModelica.org front-ends.

» The source AST results from parsing of the Modelica or Optimica source code. This AST shares the structure
of the source code, and consists of ahierarchy consisting of Java objects corresponding to class and component
declarations, equations and algorithms. The source AST can also be used for unparsing, i.e., pretty printing of
the source code.

» Theinstance AST represents a particular model instance. Typically, the user selects a class to instantiate, and
the compiler then computes the corresponding instance AST. Theinstance AST differsfrom the source AST in
that in the former case, all components are expanded down to variables of primitive type. An important feature
of the instance AST isthat it is used to represent modification environments; merging of modifications takes
place in the instance AST. As a consequence, all analysis, such as name and type analysis takes is done based
on theinstance AST.

* Theflat AST represents the flat Modelica model. Once the instance AST has been computed, the flat AST is
computed simply by traversing theinstance AST and collecting all variables of primitive type, all equationsand
all algorithms. The flat AST is then used, after some transformations, as a basis for code generation.

For more information on how the IModelica.org compiler transforms these ASTSs, see the paper "I mplementation
of aModelica compiler using JastAdd attribute grammars' by J.Akesson et. al.

This tutorial demonstrates how the Python interface to the three different ASTs in the compiler can be used. The
JPype package is used to create Java objects in a Java Virtual Machine which is seamlessly integrated with the
Python shell. The Java objects can be accessed interactively and methods of the object can be invoked.

For more information about the Java classes and their methods used in this example, please consult the API doc-
umentation for the Modelica compiler. Notice however that the documentation for the compiler front-endsis still
very rudimentary. Also, theinterfaces to the source and instance AST will be made more user friendly in upcom-
ing versions.

Three different usages of ASTs are shown:

» Count the number of classesin the Modelica standard library. In this example, a Python function is defined to
traverse the source AST which results from parsing of the Modelica standard library.

* Instantiate the CauerL owPassAnalog model. Theinstance AST for thismodel isdumped and it is demonstrated
how the merged modification environments can be accessed. Also, it is shown how a component redeclaration
affects the instance tree.

* Flatten the CauerL owPassAnalog model instance and print some statistics of the flattened Model.

The Python commands in this tutorial may be copied and pasted directely into a Python shell, in some cases
with minor modifications. You are, however, strongly encouraged to copy the commands into a text file, e.g.,
ast_example.py.

Start the tutorial by creating a working directory and copy the file $IMODELICA_HOME/Python/
jmodelical/examples/filesCauerLowPassAnalog.mo to your working directory. An on-line version of

47

Advanced topics

CauerLowPassAnalog.mo is also available (depending on which browser you use, you may have to ac-
cept the site certificate by clicking through a few steps). If you choose to create Python script file,
save it to the working directory. The tutoria is based on a model from the Modelica Standard Library:
M odelica.Electrical.Analog.Basic.Examples.CauerL owPassAnal og.

1.2. Start the Python shell

Next, open a Python shell, preferably using the Pylab mode. If you are running Windows, select the menu option
provided with the IModelica.org installation. If you are running Linux or Mac OS X, open aterminal and enter
the command:

> [path/to/jnodelica_installation/Python/jm.i python.sh -pylab

Asyour first action, go to the working directory you have created:

In [1]: cd '/path/to/working/directory

In order to run the Python script, use the 'run’ command:
In [2]: run -i ast_exanpl e. py

Notice the'-i' switch which is used in thistutorial in order to avoid loading the Modelica standard library multiple
times and thereby preventing the Python shell from running out of memory.

1.3. Load the Modelica standard library

Before we can start working with the ASTs, we need to import the Python packages that will be used

lnmport library for path nanipul ations
inport os.path

Inport the JModelica.org Python packages

i mport j nodelica

inmport jnodelica.jm as jm

from jnodel i ca. conpiler inmport MdelicaConpiler

lmport nunerical libraries
import nunpy as N

import ctypes as ct

import matplotlib. pyplot as plt

I mport JPype
i mport j pype

Create a reference to the java package 'org
org = jpype.JPackage('org')

Also, we need to create an instance of a Modelica compiler in order to compile models:

Create a conpil er
nc = Model i caConpi | er ()

In order to avoid parsing the same file multiple times (we will not change the Modelica file in this tutorial), we
will check the variable 'source _root' exists in the shell before we parse the file CauerL owPassAnalog.mo:

Don't parse the file if it har already been parsed
try:
sour ce_r oot . get Progr anRoot ()
except :
Parse the file CauerLowPassAnal og. n0 and get the root node
of the source AST
source_root = nt. parse_nodel (" Cauer LowPassAnal og. nb")

At this point, try the built-in help feature of Python by typing the following command in the shell to see the help
text for the function you just used.

48

Advanced topics

In [2]: hel p(nt. parse_nodel)

Inthefirst part of the tutorial, we will not work with thefilter model, but rather load the Modelica standard library.
Again, we check if the library has already been loaded:

Don't |load the standard library if it is already |oaded
try:
nodel i ca. get Narme() . get | D()
except NanmeError, e
Load the Modelica standard library and get the class
decl arati on AST node correspondi ng to the Mdelica
package
nmodel i ca = source_root.get Progran().getLi bNode(1). \
get St or edDef i ni tion() . get El enent (0)

The means to access the node in the source AST corresponding to the class (package) declaration of the Modelica
library is somewhat cumbersome; the source AST interface will be improved in later versions.

1.4. Count the number of classes in the Modelica standard library

Having accessed a node in the source AST, we may now perform analysis by traversing the tree. Say that we are
interested in counting the number of classes (packages, models, blocks, functions etc.) in the Modelica standard
library. Asthe basis for traversing the AST, we may use the method ClassDecl.classes() that returnsalist of local
classes contained in a class. Based on this method, a Python function for traversing the class hierarchy of the
source AST can be defined:

def count_cl asses(cl ass_decl , depth):
Count the nunber of classes hierarchically contained
in a class declaration."""

Get a list of local classes using the nethod C assDecl. cl asses()
which returns a Java ArraylLi st object containing O assDecl objects
| ocal _cl asses = cl ass_decl . cl asses()

Get the nunber of |ocal classes
num cl asses = | ocal _cl asses. si ze()

Loop over all local classes
for i in range(local _classes.size())
Call count_classes recursively for all |ocal classes
num cl asses = num cl asses + \
count _cl asses(l ocal _cl asses. get (i), depth + 1)

|If the class declaration corresponds to a package, print
the nunber of hierarchically contained classes
if class_decl.getRestriction().getNodeNane() == ' MPackage' \
and depth <= 1
print("The package % has %l hierachically contained classes" \
% cl ass_decl . qual i fi edNane(), num cl asses))

Return the nunber of hierachically contained cl asses
return numcl asses

We then call the function:

Call count_classes for 'Mbdelica
num cl asses = count _cl asses(nodel i ca, 0)

Now run the script and study the printoutsin the Python shell. Thefirst time the script is run, you will se printouts
corresponding also to the compiler accessing individual files of the Modelica standard library; the loading of the
library is done on demand as the library classes are actually accessed. Run the script once again (using the '-i'
switch), to get a cleaner output, which should now look similar to:

The package Model i ca. UsersGui de has 16 hierachically contained classes
The package Model i ca. Constants has 0 hierachically contained cl asses
The package Modelica.lcons has 16 hierachically contained cl asses

The package Modelica. Slunits has 532 hierachically contained cl asses

49

Advanced topics

The package Model i ca. StateG aph has 64 hierachically contained cl asses
The package Model i ca. Bl ocks has 258 hierachically contained cl asses

The package Modelica. El ectrical has 361 hierachically contained cl asses
The package Model i ca. Math has 74 hi erachically contained cl asses

The package Model i ca. Mechani cs has 474 hierachically contained cl asses
The package Model i ca. Medi a has 1064 hi erachi cally contained cl asses

The package Model i ca. Thermal has 88 hierachically contained classes

The package Modelica. Uilities has 86 hierachically contained cl asses
The package Model i ca has 3045 hierachically contained cl asses

Take some time to ponder the results and make sure that you understand how the Python function 'count_classes
works and which Python variables corresponds to references into the source AST.

1.5. Dump the instance AST

We shall now turn our attention to the CauerL owPassAnalog model. Specifically, we would like to analyze the
instance hierarchy of the model by dumping the tree structure to the Python shell. In addition, we will ook at the
merged modification environment of each instance AST node. Again, we will use methods defined for the Java
objects representing the AST.

First we create an instance of the CauerLowPassAnalog filter. Again we only create the instance if it has not
already been created:

Don't instantiate if instance has been conputed al ready
try:
filter_instance. conponents()
except :
Retrieve the node in the instance tree corresponding to the class
Model i ca. El ectri cal . Anal og. Exanpl es. Cauer LowPassAnal og
filter_instance = nt.instantiate_nodel (source_root, " Cauer LowPassAnal og")

Next we define a Python function for traversing the instance AST and printing each node in the shell. We also
print the merged modification environment for each instance node. In order to traverse the AST, we use the meth-
ods InstNode.instComponentDeclList() and InstNode.instExtendsList(), which both return an object of the class
List, which in turn contain instantiated component declarations and instantiated extends clauses. By invoking the
'‘dump_inst_ast' function recursively for each element in theselists, theinstance AST isin effect traversed. Dueto
theinternal representation of the instance AST, nodes of type InstPrimitive, corresponding to primitive variables,
are not leaves in the AST as would be expected. To overcome this complication, we simply check if anodeis of
type InstPrimitive, and if thisisthe case, the recursion stops.

The environment of an instance nodeis accessed by calling the method InstNode.getM ergedEnvrionment(), which
returns alist of modifications. According to the Modelica specification, outer modifications overrides inner mod-
ifications, and accordingly, modifications in the beginning of the list has precedence over later modifications.

def dunp_i nst_ast (i nst_node, indent):
"""Pretty print an instance node, including its nerged environent."""

Get the nmerged environnment of an instance node
env = inst_node. get MergedEnvi r onnment ()

Create a string containing the type and nane of the instance node
str = indent + inst_node.prettyPrint("")
str = str + " {"

Loop over all elements in the nmerged nodification environment
for i in range(env.size()):
str = str + env.get(i).toString()
if i<env.size()-1:
str = str + ", "
str = str + "}"

Print
print(str)

Get all conmponents and dunp them recursively
conponents = inst_node. i nst Conponent Decl Li st

50

Advanced topics

for i in range(conponents.getNuntChild()):
Assume that primtive variables are leafs in the instance AST
if (inst_node.getCl ass() is \
org. j nodel i ca. nodel i ca.conpiler.InstPrimtive) is False:
dunp_i nst _ast (conmponents.getChild(i),indent + " ")

Get all extends clauses and dunp them recursively
ext ends= i nst_node. i nst Ext endsLi st
for i in range(extends.get Nunthild()):
Assume that primtive variables are leafs in the instance AST
if (inst_node.getCl ass() is \
org. jnodel i ca. nodel i ca. conpiler.InstPrimtive) is Fal se:
dunp_i nst _ast (extends. getChild(i),indent + " ")

Take a minute and make sure that you understand the essential parts of the function.

Having defined the function 'dump_inst_ast', we call it with the CauerL owPassAnalog instance as an argument.

Dunp the filter instance
dunp_inst_ast(filter_instance,"")

Y ou should now see a rather lengthy printout in your shell window. Let us have a closer look at a few of the
instances in the model. First look at the printouts for aresistor in the model:

I nst Conposite: Modelica. El ectrical . Anal og. Basi c. Resi stor Rl {R=1}
InstPrimtive: SlI.Resistance R {=1, start=1, final quantity="Resistance", \
final unit="0hn'}
| nst Ext ends: |Interfaces. OnePort {R=1}
InstPrimtive: Sl.Voltage v {final quantity="ElectricPotential", final unit="V"}
InstPrimtive: Sl.Current i {final quantity="ElectricCurrent", final unit="A"}
I nst Conposite: PositivePin p {}
InstPrimtive: Sl.Voltage v {final quantity="ElectricPotential", final unit="V'}
InstPrimtive: Sl.Current i {final quantity="ElectricCurrent", final unit="A"}
I nst Conposite: NegativePin n {}
InstPrimtive: Sl.Voltage v {final quantity="ElectricPotential", final unit="V"}
InstPrimtive: Sl.Current i {final quantity="ElectricCurrent", final unit="A"}

Themodel instanceif of type InstComposite, and containstwo elements, one primitive variable, R, and one extends
clause. The modification environment for the resistor contains avalue modification '=1' and some modifications of
thebuilt in attributes for the type Real . The InstExtends node contains anumber of child nodes, which corresponds
to the content of the class Interfaces.OnePort. Notice the difference between the source AST, where an extends
node is essentially aleaf in the tree, whereas in the instance tree, the extends clause is expanded.

Let ushave alook at the effects of redeclarations in the instance AST. In the CauerL owPassAnalog model, a step
voltage signal sourceisused, which inturn relies on redeclaration of ageneric signal sourceto astep. Theinstance
node for the step voltage source V' is given below:

I nst Conposi te: Mdelica. El ectrical . Anal og. Sour ces. StepVol tage V {V=0, startTime=1, \
of f set =0}
InstPrimtive: SI.Voltage V {=0, start=1, final quantity="El ectricPotential", \
final unit="V'}
| nst Ext ends: Interfaces. Vol tageSource {V=0, startTi ne=1, offset=0,
redecl are Model i ca. Bl ocks. Sources. St ep si gnal Sour ce(hei ght =V) }
InstPrimtive: Sl.Voltage of fset {=0, =0, final quantity="ElectricPotential", \
final unit="V'}
InstPrimtive: SI.Time startTime {=1, =0, final quantity="Time", final unit="s"}
I nst Repl aci ngConposi te: Moddelica. Bl ocks. Sources. St ep si gnal Source {hei ght=V, \
final offset=offset, final startTine=startTi ne}
InstPrimtive: Real height {=V, =1}
I nst Ext ends: Interfaces. Si gnal Source {height=V, final offset=offset, \
final startTine=startTi ne}
InstPrimtive: Real offset {=offset, =0}
InstPrimtive: Slunits.Time startTine {=startTime, =0, final quantity="Ti me", \
final unit="s"}
I nst Ext ends: SO {hei ght=V, final offset=offset, final startTi ne=startTi ne}
InstPrimtive: Real Qutput y {}
I nst Ext ends: Bl ockl con {height=V, final offset=offset,

51

Advanced topics

final startTi me=startTi ne}

Here we see how the modification "redeclare Modelica.Blocks.Sources.Step signal Source(height=V)" affects the
instance AST. The node InstReplacingComposite represents the component instance, instantiated from the class
Modelica.Blocks.Sources.Step, resulting from the redeclaration. As a consequence, this branch of the instance
AST issignificantly altered by the redeclare modification.

Now look at the modification environment for the component instance startTime. The environment contains two
value modifications: '=1' and '=0". As noted above, the first modification in the list corresponds to the outermost
modification and have precedence over the following modifications. Take a minute to figure out the origin of the
modifications by looking upwards in the instance AST.

1.6. Flattening of the filter model

Having computed the instance, we can now flatten the model:

Don't flatten nodel if it already exists

try:
filter_flat_nodel . name()

except :
Flatten the nodel instance filter_instance
filter_flat_nodel = nc.flatten_nodel (filter_instance)

During flattening, the instance treeis traversed and al primitive declarations and equations are collected. In addi-
tion, such as scalarization and elimination of alias variables are performed.

Let us have alook at the flattened model:

print(filter_flat_nodel)

We may also retrieve some model statistics:

print("*** Mdel statistics for CauerLowPassAnal og *** ")
print("Nunber of differentiated variables: %" \

%filter_flat_nodel . nunDifferentiatedReal Vari abl es())
print("Nunber of al gebraic variables: %"\

% filter_flat_nodel . numAl gebrai cReal Vari abl es())
print("Nunber of equations: %"\

% filter_flat_nodel . numEquati ons())
print("Nunber of initial equations: %"\

% filter_flat_nodel.num nitial Equations())

How many variables and equations is the model composed of ? Does the model seem to be well posed?

At this point, take some time to explore the 'filter_flat_model' object by typing ‘filter_flat_model.<tab>" in the
Python shell to see what methods are available. Y ou may also have alook in the Modelica compiler API.

52

Chapter 7. Optimica

In this chapter, the Optimica extension will be presented and informally defined. The Optimica extension in de-
scribed in detail in [Jak2008a], where additional motivations for introducing Optimica can be found.The presen-
tation will be made using the following dynamic optimization problem, based on a double integrator system, as
an example:

min ¢
u

subject to the dynamic constraint

x(¢)=v(t) , x(t)=0
v(e)=u(t) ,v(e)=0

and

V(l'/)=0 X[Z'/)=]
1<u(t)<-1 v(¢t) <05

In this problem, thefinal time, tf, isfree, and the abjective isthusto minimize the time it takes to transfer the state
of the double integrator from the point (0,0) to (1,0), while respecting bounds on the velocity v(t) and the input
u(t). A Modelicamodel for the double integrator systemis given by:

nmodel Doubl el nt egr at or
Real x(start=0);
Real v(start=0);
i nput Real u;

equati on
der (x) =v;
der (V) =u;

end Doubl el nt egr at or;

In summary, the Optimica extension consists of the following elements:
* A new specialized class: opti mi zati on
* New attributes for the built-in type Real: free andi ni ti al Guess

» A new function for accessing the value of avariable at a specified time instant

Class attributes for the specialized class opt i i zat i on: objective}, start Ti ne, final Ti re and st ati c
* A new section: const r ai nt

* Inequality constraints

1. A new specialized class: optinization

A new speciaized class, caled opti ni zat i on, in which the proposed Optimica-specific constructs are valid is
supported by Optimica. This approach is consistent with the Modelica language, since there are already severa
other specialized classes, e.g., record, functi on and nodel . By introducing a new specialized class, it also be-
comes straightforward to check the validity of a program, since the Optimica-specific constructs are only valid in-
sideanopti ni zat i on class. Theopti mi zat i on class corresponds to an optimization problem, static or dynamic,
as specified above. Apart from the Optimica-specific constructs, an opt i ri zat i on class can aso contain compo-
nent and variable declarations, local classes, and equations.

It is not possible to declare components from \texttt{ optimization} classes in the current version of Optimica.
Rather, the underlying assumption isthat an opt i mi zat i on class defines an optimization problem, that is solved
off-line. An interesting extension would, however, beto allow for opt i m zat i on classes to be instantiated. With

53

Optimica

this extension, it would be possible to solve optimization problems, on-line, during simulation. A particularly
interesting application of thisfeatureis model predictive control, which isacontrol strategy that involves on-line
solution of optimization problems during execution.

As a starting-point for the formulation of the optimization problem consider the opt i ni zat i on class:

optimzation DI M nTi me
Doubl el nt egrat or di;
input Real u = di.u;
end DI M nTi ne;

This class contains only one component representing the dynamic system model, but will be extended in the
following to incorporate also the other elements of the optimization problem.

2. Attributes for the built in class Real

In order to superimpose information on variable declarations, two new attributes are introduced for the built-in
type Redl. Firstly, it should be possible to specify that avariable, or parameter, isfreein the optimization. Modelica
parameters are normally considered to be fixed after the initialization step, but in the case of optimization, some
parameters may rather be considered to be free. In optimal control formulations, the control inputs should be
marked as free, to indicate that they are indeed optimization variables. For these reasons, a new attribute for the
built-in type Real, f r ee, of boolean type isintroduced. By default, this attributeis set to f al se.

Secondly, an attribute, i ni ti al Guess, isintroduced to enable the user to provide aninitial guessfor variablesand
parameters. In the case of free optimization parameters, thei ni ti al Guess attribute provides an initial guessto
the optimization algorithm for the corresponding parameter. In the case of variables, thei ni ti al Guess attribute
isused to provide the numerical solver with aninitial guessfor the entire optimization interval. Thisisparticularly
important if a simultaneous or multiple-shooting agorithm is used, since these algorithms introduce optimization
variables corresponding to the values of variables at discrete points over the interval. Notice that such initial
guesses may be needed both for control and state variables. For such variables, however, the proposed strategy for
providing initial guesses may sometimes be inadequate. In some cases, a better solution is to use simulation data
to initialize the optimization problem. This approach is aso supported by the Optimica compiler. In the double
integrator example, the control variable u is afree optimization variable, and accordingly, thef r ee attributeis set
totrue. Also, thei ni ti al Guess attributeis set to 0.0.

optim zation DI M nTi me
Doubl el nt egrat or di (u(free=true,
initial Guess=0.0));
i nput Real u = di.u;
end DI M nTi ne;

3. A Function for accessing instant values of a vari-
able

An important component of some dynamic optimization problems, in particular parameter estimation problems
where measurement data is available, is variable access at discrete time instants. For example, if a measurement
data value, y;, has been obtained at time t;, it may be desirable to penalize the deviation between y; and a corre-
sponding variable in the model, evaluated at the time instant t;. In Modelica, it is not possible to access the value
of avariable at a particular time instant in a natural way, and a new construct therefore has to be introduced.

All variablesin Modelicaarefunctionsof time. Thevariability of variables may be different-some are continuously
changing, whereas others can change value only at discrete timeinstants, and yet others are constant. Neverthel ess,
the value of a Modelica variable is defined for al time instants within the ssmulation, or optimization, interval.
The time argument of variables are not written explicitly in Modelica, however. One option for enabling access
to variable values at specified time instants is therefore to associate an implicitly defined function with avariable
declaration. This function can then be invoked by the standard Modelica syntax for function calls, y(t _i). The
name of the function isidentical to the name of the variable, and it has one argument; the time instant at which the
variableis evaluated. This syntax is also very natural since it corresponds precisely to the mathematical notation
of a function. Notice that the proposed syntax y(t_i) makes the interpretation of such an expression context

Optimica

dependent. In order for this construct to be valid in standard Modelica, y must refer to a function declaration.
With the proposed extension, y may refer either to a function declaration or a variable declaration. A compiler
therefore needsto classify an expressiony(t _i) based on the context, i.e., what function and variable declarations
are visible. This feature of Optimica is used in the constraint section of the double integrator example, and is
described below.

4. Class attributes

In the optimization formulation above, there are elements that occur only once, i.e., the cost function and the
optimization interval. These elements are intrinsic properties of the respective optimization formulations, and
should be specified, once, by the user. In this respect the cost function and optimization interval differ from, for
example, constraints, since the user may specify zero, one or more of the latter.

In order to encode these elements, class attributes are introduced. A class attribute is an intrinsic element of a
specialized class, and may be modified in a class declaration without the need to explicitly extend from a built-
in class. In the Optimica extension, four class attributes are introduced for the specialized class opt i mi zat i on.
These are obj ect i ve, which defines the cost function, st art Ti me, which defines the start of the optimization
interval, f i nal Ti me, which defines the end of the optimization interval, and st at i ¢, which indicates whether the
class defines a static or dynamic optimization problem. The proposed syntax for class attributes is shown in the
following opt i ni zat i on class:

optim zation DI M nTime (
obj ecti ve=final Ti ne,
start Ti ne=0,
final Time(free=true,initial Guess=1))
Doubl el nt egrat or di (u(free=true,
initial Guess=0.0));
input Real u = di.u;
end DI M nTi ne;

The default value of the class attribute st at i ¢ isf al se, and accordingly, it does not have to be set in thiscase. In
essence, the keyword ext ends and the reference to the built-in class have been eliminated, and the modification
construct is instead given directly after the name of the class itself. The class attributes may be accessed and
modified in the same way as if they were inherited.

5. Constraints

Constraints are similar to equations, and in fact, a path equality constraint is equivalent to a Modelica equation.
But in addition, inequality constraints, aswell as point equality and inequality constraints should be supported. Itis
therefore natural to have a separation between equations and constraints. In Modelica, initial equations, equations,
and algorithms are specified in separate sections, within a class body. A reasonable alternative for specifying
constraintsisthereforeto introduce anew kind of section, const r ai nt . Constraint sectionsare only allowed inside
anoptim zati on class, and may contain equality, inequality aswell as point constraints. In the double integrator
example, there are several constraints. Apart from the constraints specifying bounds on the control input u and
the velocity v, there are also terminal constraints. The latter are conveniently expressed using the mechanism for
accessing the value of avariable at a particular time instant; di . x(fi nal Ti me) =1 and di . v(fi nal Ti me)=0. In
addition, boundsmay haveto be specified for thef i nal Ti me classattribute. Theresulting optimization formulation
may now be written:;

optim zation DI M nTime (
obj ecti ve=fi nal Ti ne,
start Ti ne=0,
final Time(free=true,initial Guess=1))
Doubl el nt egrat or di (u(free=true,
initial Guess=0.0));
input Real u = di.u;
constrai nt
final Ti me>=0.5;
final Ti me<=10;
di . x(final Ti me)=1;
di . v(final Ti me) =0;
di . v<=0. 5;

55

Optimica

di.u>=-1; di.u<=l;
end DI M nTi ne;

The Optimica specification can be translated into executable format and solved by a numerical solver, yielding
the result:

Figure 7.1. Optimization result

1.0

— X

- Vv

0.6 e . T . . 8 . . ,

s s i e

020+ N

0'%.0 0.5 1.0 15 2.0 25

1.0 .

[T RS

0.0 mrreeeeeens

—0.5F - - - - - cede - et - - : - - ,

SLOE
0.0 0.5 1.0 15 2.0 25

56

Chapter 8. Limitations

This page lists the current limitations of the IModelica.org platform, as of version 1.3.0. The development of the
platform can befollowed at the Trac site, where future rel eases and associated features are planned. In order to get
an idea of the current Modelica compliance of the compiler front-end, you may look at the associated test suite.
All models with atest annotation can be flattened.

» The Modelicacompliance of the front-end is limited; the following features are currently not supported:
« If expressions are supported, but not:
* When clauses
* If equations
 Parsing of full Modelica 3.2 (Modelica 3.0 is supported)
* Integer and boolean variables (integer and boolean parameters and constants are supported)
e Strings
e Enumerations
« Generics (redeclare constructs) isonly partialy supported
 Partial support for external functions, only external C functionswith scalar inputs and outputs are supported.

« Thefollowing built-in functions are not supported:

sign(v) cardinality() reinit(x, expr)
Integer(e) semiLinear(...) scalar(A)

String(...) Subtask.decouple(v) vector(A)

div(x,y) initial() matrix(A)

mod(x,y) terminal() diagonal (v)

rem(x,y) smooth(p, expr) product(...)

ceil(x) sample(start, interval) outerProduct(vl, v2)
floor(x) pre(y) symmetric(A)
integer(x) edge(b) skew(Xx)

delay(...)

« Overloaded operators (M odelica Language Specification, chapter 14)
 Stream connections with more than two connectors are not supported.
« Mapping of models to execution environments (M odelica Language Specification, chapter 16)
* Inthe Optimicafront-end the following constructs are not supported:
« Annotations for transcription information
e The JModdica.org Model Interface (JMI) has the following Limitations:
« The ODE interface requires the Modelicamodel to be written on explicit ODE form in order to work.
» Second order derivatives (Hessians) are not provided

¢ Theinterface does not yet comply with FMI specification

57

http://trac.jmodelica.org

Limitations

* The JModelica.org FMI Model Interface (FMI) hasthe following Limitations:
* The FMI interface only supports FMUs distributed with binaries, not only source code.

e Optionsfor setting and getting string variables does not work

58

Chapter 9. Release notes

1. Release notes for JModelica.org version 1.2
1.1. Highlights

» Vectors and user defined functions are supported by the Modelica and Optimica compilers
» New Python functions for easy initialization, simulation and optimization

* A new Python simulation package, Assimulo, has been integrated to provide increased flexibility and perfor-
mance

1.2. Compilers

1.2.1. The Modelica compiler

1.2.1.1. Arrays

Arrays are now amost fully supported. This includes all arithmetic operations and use of arrays in al places
allowed in the language specification. The only exception is slice operations, that are only supported for the last
component in an access.

1.2.1.2. Function-like operators

Most function-like operators are now supported. The following list contains the function-like operators that are
not supported:

e sign(v)

* Integer(e)

e String(...)

o div(x,y)

e mod(x,y)

* rem(x,y)

* ceil(x)

« floor(x)

* integer(x)

. delay(...)
 cardinality()

» semiLinear()

* Subtask.decouple(v)
. initia()
 terminal()

* smooth(p, expr)

o sample(start, interval)

59

Release notes

. pre(y)

* edge(b)

* reinit(x, expr)

o scalar(A)

 vector(A)

o matrix(A)

* diagonal(v)

e product(...)

* outerProduct(vl, v2)

* symmetric(A)

» skew(x)

1.2.1.3. Functions and algorithms
Both algorithms and pure M odelica functions are supported, with afew exceptions:

» Useof control structures (if, for, etc.) with test or loop expressions with variability that is higher than parameter
is not supported when compiling for CppAD.

* Indexesto arrays of records with variability that is higher than parameter is not supported when compiling for
CppAD.

 Support for inputs to functions with one or more dimensions declared with ":" is only partial.
External functions are not supported.
1.2.1.4. Miscellaneous

 Record constructors are now supported.

Limited support for constructs generating events. If expressions are supported.

» The noEvent operator is supported.

The error checking has been expanded to cover more errors.
» Modelica compliance errors are reported for legal but unsupported language constructs.
1.2.2. The Optimica Compiler

All support mentioned for the Modelica compiler applies to the Optimica compiler aswell.

1.3. The JModelica.org Model Interface (JMI)
1.3.1. General

1.3.1.1. Automatic scaling based on the noni nal attribute

The Modelica attribute noni nal can be used to scale variables. This is particularly important when solv-
ing optimization problems where poorly scaled systems may result in lack of convergence. Automatic scal-
ing is turned off by default since it introduces a slight computational overhead: setting the compiler option
enabl e_vari abl e_scal i ng tot r ue enables this feature.

60

Release notes

1.3.1.2. Support for event indicator functions

Support for event indicator functions and switching functions are now provided. These features are used by the
new simulation package Assimulo to simulate systems with events. Notice that limitations in the compiler front-
end applies, see above.

1.3.1.3. Integer and boolean parameters

Support for event indicator functions and switching functions are now provided. These features are used by the
new simulation package Assimulo to simulate systems with events. Notice that limitations in the compiler front-
end applies, see above.

1.3.1.4. Linearization

A function for linearization of DAE models is provided. The linearized models are computed using automatic
differentiation which gives results at machine precision. Also, for index-1 systems, linearized DAES can be con-
verted into linear ODE form suitable for e.g., control design.

1.4. The collocation optimization algorithm

1.4.1. Piecewise constant control signals

In control applications, in particular model predictive control, it is common to assume piecewise constant control
variables, sometimes referred to as blocking factors. Blocking factors are now supported by the collocation-based
optimization algorithm, seej nodel i ca. exanpl es. cstr_npc for an example.

1.4.2. Free initial conditions allowed

Therestriction that all stateinitial conditions should be fixed has been relaxed in the optimization algorithm. This
enables more flexible formulation of optimization problems.

1.4.3. Dens output of optimization result

Functions for retrieving the optimization result from the collocation-based algorithm in a dense format are now
provided. Two options are available: either auser defined mesh is provided or the result is given for auser defined
number of points inside each finite element. Interpolation of the collocation polynomials are used to obtain the
dense output.

1.5. New simulation package: Assimulo

The simulation based on pySundials have been removed and replaced by the Assmulo package which is also
using the Sundials solvers. The main difference between the two is that Asssmulo is using Cython to connect to
Sundials. Thishas substantially improved the simulation speed. For moreinfo regarding Assimulo and itsfeatures,
see; http://www.jmodelica.org/assimulo.

1.6. FMI compliance

The Functional Mockup Interface (FMI) standard is partially supported. FMI compliant model meta data XML
document can be exported, support for the FMI C model execution interface is not yet supported.

1.7. XML model export

Models are now exported in XML format. The XML documents contain information on the set of variables, the
equations, the user defined functions and for the Optimica’s optimization problems definition of the flattened
model. Documents can be validated by a schema designed as an extension of the FMI XML schema.

1.8. Python integration

* The order of the non-named arguments for the ModelicaCompiler and OptimicaCompiler function
conpi | e_nodel has changed. In previous versions the arguments came in the order (nodel _fil e_nane,

61

http://www.jmodelica.org/assimulo

Release notes

model _class_nane, target = "nodel") andisnow (nodel class_name, nodel file_nane, target
= "nodel ") .

» The functions set par anet er and get paraneter injni.Mdel have been removed. Instead the functions
set _val ue and get_vaue (alsoinj ni . Model) should be used.

* Caching has been implemented in the xmlparser module to improve execution time for working with jmi.Model
objects, which should be noticeable for large models.

1.8.1. New high-level functions for optimization and simulation

New high-level functionsfor problem initialization, optimization and simulation have been added which wrap the
compilation of amodel, creation of amodel object, setup and running of an initialization/optimization/simulation
and returning of aresult in one function call. For each function there is an algorithm implemented which will be
used by default but there is also the possibility to add custom algorithms. All examples in the example package
have been updated to use the high-level functions.

1.9. Contributors

Christian Andersson

Tove Bergdahl

Magnus Géfvert

Jesper Mattsson

Philip Nilsson

Roberto Parrotto

Philip Reutersward

Johan Akesson

1.9.1. Previous contributors

Jens Rantil
2. Release notes for JModelica.org version 1.3
2.1. Highlights

 Functional Mockup Interface (FM1) simulation support
* Support for minimum time problems

» Improved support for redeclare/replaceable in the compiler frontend

Limited support for external functions

* Support for stream connections (with up to two connectors in a connection)
2.2. Compilers

2.2.1. The Modelica compiler
2.2.1.1. Arrays

Slice operations are now supported.

62

Release notes

Array support is now nearly complete. The exceptions are:

» Functions with array inputs with sizes declared as":' - only basic support.
» A few array-related function-like operators are not supported.
 Connect clauses does not handle arrays of connectors properly.

2.2.1.2. Redecare

Redeclares as class elements are now supported.

2.2.1.3. Conditional components

Conditional components are now supported.

2.2.1.4. Constants and parameters

Function calls can now be used as binding expressions for parameters and constants. The handling of Integer,
Boolean and record type parameters is also improved.

2.2.1.5. External functions
» Basic support for external functionswrittenin C.

» Annotationsfor libraries, includes, library directories and include directories supported.

Platform directories supported.

 Can not be used together with CppAD.

» Arrays as arguments are not yet supported. Functionsin Modelica_utilies are also not supported.
2.2.1.6. Stream connectors

Stream connectors, including the operators inStream and actual Stream and connections with up to two stream
connectors are supported.

2.2.1.7. Miscellaneous
The error checking has been improved, eliminating many erroneous error messages for correct Modelica code.

The memory and time usage for the compiler has been greatly reduced for medium and large models, especially
for complex class structures.

2.2.2. The Optimica compiler
All support mentioned for the Modelica compiler applies to the Optimica compiler aswell.
2.2.2.1. New class attribute objectivelntegrand

Support for the objectivel ntegrand class attribute. In order to encode Lagrange cost functions of the type

i

J.L(.) dt

to

the Optimica class attribute obj ect i vel nt egr and is supported by the Optimica compiler. The expression L may
be utilized by optimization algorithms providing dedicated support for Lagrange cost functions.

2.2.2.2. Support for minimum time problems

Optimization problems with free initial and terminal times can now be solved by setting the free attribute of the
class attributes startTime and final Time to true. The Optimica compiler automatically translates the problem into

63

Release notes

a fixed horizon problems with free parameters for the start en terminal times, which in turn are used to rescale
the time of the problem.

Using this method, no changes are required to the optimization algorithm, since afixed horizon problem is solved.

2.3. JModelica.org Model Interface (JMI)

2.3.1. The collocation optimization algorithm
2.3.1.1. Dependent parameters

Support for free dependent parameters in the collocation optimization algorithm is now implemented. In models
containing parameter declarations such as:

parameter Real pl(free=true);
paraneter Real p2 = pi;

where the parameter p2 needs to be considered as being free in the optimization problem, with the additional
equality constraint:

pl = p2
included in the problem.
2.3.1.2. Support for Lagrange cost functions

The new Optimica class attribute objectivel ntegrand, see above, is supported by the collocation optimization al-
gorithm. The integral cost is approximated by a Radau quadrature formula.

2.4. Assimulo
Support for simulation of an FMU (see below) using Assimulo. Simulation of an FMU can either be done by using

the high-level method *simulate* or creating a model from the FMIModel class together with a problem class,
FMIODE which is then passed to CV ode.

2.5. FMI compliance

Improved support for the Functional Mockup Interface (FMI) standard. Support for importing an FMI model,
FMU (Functional Mockup Unit). The import consist of loading the FMU into Python and connecting the models
C execution interface to Python. Note, strings are not currently supported.

Imported FMUs can be simulated using the Assimulo package.

2.6. XML model export

2.6.1. noEvent Operator

Support for the built-in operator noEvent has been implemented.
2.6.2. static attribute

Support for the Optimica attribute static has been implemented.
2.7. Python integration

2.7.1. High-level functions
2.7.1.1. Model files

Passing more than one model file to high-level functions supported.

Release notes

2.7.1.2. New result object

A result object isused as return argument for all algorithms. The result object for each algorithm extends the base
classResul t Base and will therefore (at |east) contain: the model object, the result file name, the solver used and
the result data object.

2.7.2. File l/O

Rewriting xmlparser.py has improved performance when writing simulation result data to file considerably.

2.8. Contributors

Christian Andersson

Tove Bergdahl

Magnus Géfvert

Jesper Mattsson

Roberto Parrotto

Johan Akesson

Philip Reuterswéard

2.8.1. Previous contributors
Philip Nilsson

Jens Rantil

65

Bibliography

[Jak2007] Johan Akesson. Tools and Languages for Optimization of Large-Scale Systems. LUTFD2/
TFRT--1081--SE. Lund University. Sweden. 2007.

[Jak2008b] Johan Akesson, Gorel Hedin, and Torbjérn Ekman. Tools and Languages for Optimization of Large-
Scale Systems. 117-131. Electronic Notesin Theoretical Computer Science. 203:2. April 2008.

[Jak2008a] Johan Akesson. Optimica—An Extension of Modelica Supporting Dynamic Optimization. Proc. 6th
International Modelica Conference 2008. Modelica Association. March 2008.

[Jak2010] Johan Akesson, Karl-Erik Arén, Magnus Géfvert , , and . Modeling and Optimi zati on with Optimica and
JModelica.org—Languages and Tools for Solving Large-Scale Dynamic Optimization Problem. Com-
puters and Chemical Engineering. 203:2. 2010.

66

Index

C
CppAD, 5

I
IPOPT, 5

J

JastAdd, 4
ML, 5

(see dso IModelicaModel Interface)
JModelicaModel Interface (see IMI)

M
Mode€lica, 4

@)
Optimica, 4

X
XML, 5
XPATH, 5

67

