JModelica.org
User Guide

Version 1.16

2015-09-09


Acknowledgements

This document is produced with DocBook 5 using XMLMind XML Editor for authoring, Norman Walsh's XSL stylesheets and a GNOME xsltproc + Apache fop toolchain. Math contents is converted from LaTeX using the TeX/LaTeX to MathML Online Translator by the Ontario Research Centre for Computer Algebra and processed by JEuclid.

Table of Contents

1. Introduction
1. About JModelica.org
2. Mission Statement
3. Technology
4. Architecture
5. Extensibility
2. Installation
1. Supported platforms
2. Installation on Windows
2.1. Dependencies
2.2. Installation
2.3. Verifying the installation
2.4. Compilation from sources
3. Installation on Linux systems
3.1. Prerequisites
3.1.1. Installing pre-compiled packages
3.1.2. Compiling Ipopt
3.1.3. Installing JModelica.org with WORHP (optional)
3.2. Compiling
3.3. Testing JModelica.org
3. Getting started
1. The JModelica.org Python packages
2. Starting a Python session
2.1. Windows
2.2. Linux
3. Run an example
4. Check your installation
5. Redefining the JModelica.org environment
5.1. Example redefining IPOPT_HOME
6. The JModelica.org user forum
4. Working with Models
1. Introduction to models
1.1. The different model objects in JModelica.org
2. Compilation
2.1. Simple FMU-ME compilation example
2.2. Simple FMU-CS compilation example
2.3. Simple JMU compilation example
2.4. Compiling from libraries
2.5. Compiler settings
2.5.1. compile_fmu parameters
2.5.2. Compiler options
2.6. Compile in separate process
2.7. Compilation in more detail
2.7.1. Create a compiler
2.7.2. Source tree generation and flattening
2.7.3. Code generation
3. Loading models
3.1. The FMU
3.2. The JMU
3.3. Loading an FMU
3.4. Loading a JMU
3.5. Transferring an OptimizationProblem
4. Changing model parameters
4.1. Setting and getting parameters
5. Debugging models
5.1. Compiler logging
5.2. Runtime logging
5.2.1. Setting log level
5.2.2. Interpreting logs from JModelica.org
5.3. Getting HTML diagnostics
5. Simulation of FMUs
1. Introduction
2. A first example
3. Simulation of Models
3.1. Convenience method, load_fmu
3.2. Arguments
3.2.1. Input
3.2.2. Options for FMUModelME1 and FMUModelME2
3.2.3. Options for FMUModelCS1 and FMUModelCS2
3.3. Return argument
4. Examples
4.1. Simulation of a high-index model
4.2. Simulation and parameter sweeps
4.3. Simulation of an Engine model with inputs
4.4. Simulation using the native FMI interface
4.4.1. Implementation
4.5. Simulation of Co-Simulation FMUs
6. Optimization
1. Introduction
2. A first example
3. Solving optimization problems
4. Scaling
5. Dynamic optimization of DAEs using direct collocation with CasADi
5.1. Algorithm overview
5.1.1. Reusing the same discretization for several optimization solutions
5.1.2. Warm starting
5.2. Examples
5.2.1. Optimal control
5.2.2. Minimum time problems
5.2.3. Optimization under delay constraints
5.2.4. Parameter estimation
5.3. Investigating optimization progress
5.3.1. Collocation
5.3.2. Inspecting residuals
5.3.3. Inspecting the constraint Jacobian
5.3.4. Inspecting dual variables
5.3.5. Inspecting low level information about NLP solver progress
6. Derivative-Free Model Calibration of FMUs
7. Graphical User Interface for Visualization of Results
1. Plot GUI
1.1. Introduction
1.2. Edit Options
1.3. View Options
1.4. Example
8. Optimica
1. A new specialized class: optimization
2. Attributes for the built in class Real
3. A Function for accessing instant values of a variable
4. Class attributes
5. Constraints
9. Abstract syntax tree access
1. Tutorial on Abstract Syntax Trees (ASTs)
1.1. About Abstract Syntax Trees
1.2. Load the Modelica standard library
1.3. Count the number of classes in the Modelica standard library
1.4. Dump the instance AST
1.5. Flattening of the filter model
10. Limitations
A. Compiler options
1. List of options that can be set in compiler
B. Release notes
1. Release notes for JModelica.org version 1.16
1.1. Highlights
1.2. Compiler
1.2.1. Compliance
1.2.2. Support for dynamic state select
1.3. Optimization
2. Release notes for JModelica.org version 1.15
2.1. Highlights
2.2. Compiler
2.2.1. Compliance
2.2.2. Support for over-constrained initialization systems
2.2.3. FMU 2.0 export
2.2.4. Improved numerical algorithms in FMU runtime
2.2.5. CasADi 2.0 support in Optimization
2.3. Simulation
3. Release notes for JModelica.org version 1.14
3.1. Highlights
3.2. Compiler
3.2.1. Compliance
3.2.2. New compiler API
3.2.3. FMI 2.0 RC2 export
3.3. Simulation
3.4. Optimization
4. Release notes for JModelica.org version 1.13
4.1. Highlights
4.2. Compilers
4.2.1. FMI 2.0 RC1 export
4.2.2. Compliance
4.3. Simulation
4.3.1. In-lined switches
4.4. Optimization
4.4.1. New CasADi tool chain
5. Release notes for JModelica.org version 1.12
5.1. Highlights
5.2. Compilers
5.3. Simulation
5.4. Contributors
5.4.1. Previous contributors
6. Release notes for JModelica.org version 1.11
6.1. Highlights
6.2. Compilers
6.3. Simulation
6.3.1. Runtime logging
6.3.2. Support for ModelicaError and assert
6.4. Contributors
6.4.1. Previous contributors
7. Release notes for JModelica.org version 1.10
7.1. Highlights
7.2. Compilers
7.2.1. Export of FMUs for Co-Simulation
7.3. Python
7.3.1. Improved result data access
7.3.2. Improved error handling
7.3.3. Parsing of FMU log files
7.4. Simulation
7.4.1. Support for FMU version 2.0b4
7.4.2. Result filter
7.4.3. Improved solver support
7.5. Optimization
7.5.1. Improved variable scaling
7.5.2. Improved handling of measurement data
7.6. Contributors
7.6.1. Previous contributors
8. Release notes for JModelica.org version 1.9.1
9. Release notes for JModelica.org version 1.9
9.1. Highlights
9.2. Compilers
9.2.1. Improved Modelica compliance
9.2.2. Support for MSL CombiTables
9.2.3. Support for hand guided tearing
9.2.4. Improved function inlining
9.2.5. Memory and execution time improvements in the compiler
9.3. Python
9.3.1. Compile in separate process
9.4. Simulation
9.4.1. Simulation of co-simulation FMUs
9.5. Optimization
9.5.1. Improvements to CasADi-based collocation algorithm
9.6. Contributors
9.6.1. Previous contributors
10. Release notes for JModelica.org version 1.8.1
11. Release notes for JModelica.org version 1.8
11.1. Highlights
11.2. Compilers
11.2.1. Improved Modelica compliance
11.2.2. Function inlining
11.2.3. New state selection algorithm
11.3. Python
11.3.1. Simplified compiling with libraries
11.4. Optimization
11.4.1. Improvements to CasADi-based collocation algorithm
11.5. Contributors
11.5.1. Previous contributors
12. Release notes for JModelica.org version 1.7
12.1. Highlights
12.2. Compilers
12.2.1. Support for mixed systems of equations
12.2.2. Support for tearing
12.2.3. Improved Modelica compliance
12.2.4. Function inlining
12.3. Python
12.3.1. New package structure
12.3.2. Support for shared libraries in FMUs
12.4. Simulation
12.4.1. Simulation of hybrid systems
12.5. Optimization
12.5.1. A novel CasADi-based collocation algorithm
12.6. Contributors
12.6.1. Previous contributors
13. Release notes for JModelica.org version 1.6
13.1. Highlights
13.2. Compilers
13.2.1. Index reduction
13.2.2. Modelica compliance
13.3. Python
13.3.1. Graphical user interface for visualization of simulation and optimization results
13.3.2. Simulation with function inputs
13.3.3. Compilation of XML models
13.3.4. Python version upgrade
13.4. Optimization
13.4.1. Derivative- free optimization of FMUs
13.4.2. Pseudo spectral methods for dynamic optimization
13.5. Eclipse Modelica plugin
13.6. Contributors
13.6.1. Previous contributors
14. Release notes for JModelica.org version 1.5
14.1. Highlights
14.2. Compilers
14.2.1. When clauses
14.2.2. Equation sorting
14.2.3. Connections
14.2.4. Eclipse IDE
14.2.5. Miscellaneous
14.3. Simulation
14.3.1. FMU export
14.3.2. Simulation of ODEs
14.3.3. Simulation of hybrid and sampled systems
14.4. Initialization of DAEs
14.5. Optimization
14.6. Contributors
14.6.1. Previous contributors
15. Release notes for JModelica.org version 1.4
15.1. Highlights
15.2. Compilers
15.2.1. Enumerations
15.2.2. Miscellaneous
15.2.3. Improved reporting of structural singularities
15.2.4. Automatic addition of initial equations
15.3. Python interface
15.3.1. Models
15.3.2. Compiling
15.3.3. initialize, simulate and optimize
15.3.4. Result object
15.4. Simulation
15.4.1. Input trajectories
15.4.2. Sensitivity calculations
15.4.3. Write scaled simulation result to file
15.5. Contributors
15.5.1. Previous contributors
16. Release notes for JModelica.org version 1.3
16.1. Highlights
16.2. Compilers
16.2.1. The Modelica compiler
16.2.2. The Optimica compiler
16.3. JModelica.org Model Interface (JMI)
16.3.1. The collocation optimization algorithm
16.4. Assimulo
16.5. FMI compliance
16.6. XML model export
16.6.1. noEvent operator
16.6.2. static attribute
16.7. Python integration
16.7.1. High-level functions
16.7.2. File I/O
16.8. Contributors
16.8.1. Previous contributors
17. Release notes for JModelica.org version 1.2
17.1. Highlights
17.2. Compilers
17.2.1. The Modelica compiler
17.2.2. The Optimica Compiler
17.3. The JModelica.org Model Interface (JMI)
17.3.1. General
17.4. The collocation optimization algorithm
17.4.1. Piecewise constant control signals
17.4.2. Free initial conditions allowed
17.4.3. Dens output of optimization result
17.5. New simulation package: Assimulo
17.6. FMI compliance
17.7. XML model export
17.8. Python integration
17.8.1. New high-level functions for optimization and simulation
17.9. Contributors
17.9.1. Previous contributors
C. Initialization and simulation of JMUs (Deprecated in JModelica.org 1.15)
1. Introduction
2. Initialization of JMUs
2.1. Solving DAE initialization problems
2.2. How JModelica.org creates the initialization system of equations
2.3. Initialization algorithms
2.3.1. Initialization using IPOPT
2.3.2. Initialization using KInitSolveAlg
3. Simulation of JMUs
3.1. The simulate function
3.1.1. Input
3.1.2. Options for JMUModel
3.1.3. Return argument
3.2. Examples
3.2.1. Simulation with inputs
3.2.2. Simulation of a discontinuous system
3.2.3. Simulation with sensitivities
D. Dynamic optimization of DAEs using direct collocation with JMUs (Deprecated in JModelica.org 1.15)
1. Dynamic optimization of DAEs using direct collocation with JMUs
1.1. Examples
1.1.1. Optimal control
1.1.2. Minimum time problems
1.1.3. Parameter optimization
Bibliography

List of Figures

1.1. JModelica.org platform architecture.
2.1. Selecting Python packages in the Choose components window.
5.1. Simulation result of the Van der Pol oscillator.
5.2. Modelica.Mechanics.Rotational.First connection diagram
5.3. Simulation result for Modelica.Mechanics.Rotational.Examples.First
5.4. Simulation result-phase plane
5.5. Overview of the Engine model
5.6. Resulting trajectories for the engine model.
5.7. Simulation result
5.8. Simulation result
6.1. Optimal profiles for the VDP oscillator
6.2. Optimal profiles for the CSTR problem.
6.3. Optimal control profiles and simulated trajectories corresponding to the optimal control input.
6.4. Minimum time profiles for the Van der Pol Oscillator.
6.5. Optimization result for delayed feedback example.
6.6. A schematic picture of the quadruple tank process.
6.7. Measured state profiles.
6.8. Control inputs used in the identification experiment.
6.9. Simulation result for the nominal model.
6.10. State profiles corresponding to estimated values of a1 and a2.
6.11. The Furuta pendulum.
6.12. Measurements of Measurements of and for the Furuta pendulum. and Measurements of and for the Furuta pendulum. for the Furuta pendulum.
6.13. Measurements and model simulation result for Measurements and model simulation result for and when using nominal parameter values in the Furuta pendulum model. and Measurements and model simulation result for and when using nominal parameter values in the Furuta pendulum model. when using nominal parameter values in the Furuta pendulum model.
6.14. Measurements and model simulation results for Measurements and model simulation results for and with nominal and optimal parameters in the model of the Furuta pendulum. and Measurements and model simulation results for and with nominal and optimal parameters in the model of the Furuta pendulum. with nominal and optimal parameters in the model of the Furuta pendulum.
7.1. Overview of JModelica.org Plot GUI
7.2. A result file has been loaded.
7.3. Plotting a trajectory.
7.4. Figure Options.
7.5. Figure Axis and Labels Options.
7.6. Figure Lines and Legends options.
7.7. An additional plot has been added.
7.8. Moving Plot Figure.
7.9. GUI after moving the plot window.
7.10. Complex Figure Layout.
7.11. Figure View Options.
7.12. Multiple figure example.
8.1. Optimization result
C.1. A schematic picture of the quadruple tank process.
C.2. Tank levels
C.3. Input trajectories
C.4. Electric Circuit
C.5. Simulation result
C.6. Sensitivity results.
D.1. Optimal profiles for the CSTR problem.
D.2. Optimal control profiles and simulated trajectories corresponding to the optimal control input.
D.3. Minimum time profiles for the Van der Pol Oscillator.
D.4. A schematic picture of the quadruple tank process.
D.5. Measured state profiles.
D.6. Control inputs used in the identification experiment.
D.7. Simulation result for the nominal model.
D.8. State profiles corresponding to estimated values of a1 and a2.
D.9. State profiles corresponding to estimated values of a1, a2, a3 and a4.

List of Tables

2.1. Package versions for Ubuntu
5.1. General options for AssimuloFMIAlg.
5.2. Selection of solver arguments for CVode
5.3. General options for FMICSAlg.
5.4. Result Object
6.1. Standard options for the CasADi- and collocation-based optimization algorithm
6.2. Experimental and debugging options for the CasADi- and collocation-based optimization algorithm
6.3. Parameters for the quadruple tank process.
A.1. Compiler options
C.1. Options for the collocation-based optimization algorithm
C.2. Options for KInitSolveAlg
C.3. Options for KINSOL contained in the KINSOL_options dictionary
C.4. Values allowed in the constraints array
C.5. Verbosity levels in KINSOL
C.6. General options for AssimuloAlg.
C.7. Selection of solver arguments for CVode
C.8. Selection of solver arguments for IDA
C.9. Result Object
D.1. Options for the JMU and collocation-based optimization algorithm
D.2. Parameters for the quadruple tank process.